本发明涉及一种水凝胶的制备方法,尤其涉及到一种新型多孔纳米碳球复合水凝胶及其制备方法,属于环保技术领域。
技术背景
多孔纳米碳球为三维碳纳米材料,因其表面多孔,具有比二维碳纳米材料(石墨烯、碳纳米管等)表面积更小、催化活性、吸附能力更强。
因多数天然高分子吸水性、保水性较好,天然高分子改性水凝胶在各个领域得到了广泛应用。其中壳聚糖便是其中之一,壳聚糖是由自然界广泛存在的几丁质经过脱乙酰作用得到的,在医药、食品、化工、化妆品、水处理、金属提取及回收、生化和生物医学工程等诸多领域的应用研究取得了重大进展。羧甲基壳聚糖是壳聚糖在碱性条件下与氯乙酸反应制得的一种水溶性壳聚糖衍生物,因为羧基的引入,改善了其在水中的溶解性。此外,引入的羧基可以与溶液中的金属离子配位,吸附溶液中的金属离子,从而达到净化污水的目的。
水凝胶因其独特的三维网状结构、较高的吸附量、较好的吸附速率、良好的可再生性在金属离子吸附领域引起了人们的广泛关注。水凝胶及复合水凝胶的应用越来越广泛。
中国专利号201210378225.1公开了一种吸附重金属离子的具巯基磁性水凝胶的制备方法,聚合物水凝胶由丙烯酸羟乙酯、L-半胱氨酸两种单体和蒸馏水混合经辐照聚合得到,并以该聚合物水凝胶为模板原位负载磁性纳米铁;该发明原位负载磁性纳米铁,方法简单,将所制得的具巯基磁性水凝胶应用于重金属离子的吸附,能有效去除重金属离子。
中国专利号201210332089.2公开了一种具有互穿聚合物网络结构的金属离子印迹水凝胶吸附材料及其制备方法,将丙烯酸类单体、丙烯酸类交联剂和自由基引发剂,和乙烯醚类交联剂、阳离子引发剂,和金属盐溶解在溶剂中混合均匀后,注入模具,经一步紫外光辐照固化5分钟~1小时,将所得材料在盐酸溶液中抽提,去除模板离子,得到金属离子印迹水凝胶吸附材料。该发明具有优异的力学性能、较高的吸附容量以及较强的选择吸附性。
技术实现要素:
为克服现有技术存在的金属离子吸附量小缺点,本发明的首要目的旨在提供一种新型多孔纳米碳球复合水凝胶。
本发明的一种新型多孔纳米碳球复合水凝胶,其特征在于,成分为多糖/阴离子多糖-聚多巴胺-多孔碳纳米球复合水凝胶,其中聚多巴胺-多孔碳纳米球的介入提高了水凝胶的稳定性,而且提高了水凝胶的吸附能力。吸附能力的提高在于聚多巴胺提供大量接触金属离子和有机污染物的静电相互作用的活性位点,可与金属离子形成稳定螯合物;功能化多孔碳纳米球比表面积较大,其表面的孔为金属离子等提供空间;多糖/阴离子型多糖,例如羧甲基壳聚糖也可与金属离子紧密结合,不容易发生脱吸附行为。
本发明的一种新型多孔纳米碳球复合水凝胶,其制备方法如下:
a)活性多孔碳纳米微球的制备:依次将40~50份浓强酸、5~10份中强酸、3~6份氧化剂、1~3份多孔纳米碳球加入搪瓷釜中,在40~60℃下搅拌12h,冷却至室温,加入40~50份冰水,然后用30~50nm渗透膜过滤,得活性多孔纳米碳球;
b)聚多巴胺改性多孔碳纳米球分散液的制备:将多孔纳米碳球加入水中超声分散,制成浓度为0.5~2.0mg/mL的多孔纳米碳球分散液,然后加入浓度为0.5~1.0mg/mL多巴胺溶液与之混合并搅拌均匀,用碱或缓冲液调节体系pH至8.0左右,在搅拌下并加热至50~70℃,反应6~8h,冷却得到聚多巴胺改性多孔碳纳米球分散液;
c)复合水凝胶的制备:称取8~10份多糖或阴离子型多糖,在80~100℃下搅拌至溶解均匀,加入30~50份步骤b的多巴胺改性多孔碳纳米球分散液,超声分散均匀,用注射器将混合液滴加到3%氯化钙-饱和硼酸水溶液之中,交联成直径为1~5mm的复合水凝胶。
所述的多孔碳纳米球为化学气相沉积法、溶剂热法、模板法、超声喷雾热分解法、超临界法、冲击压缩法、电弧放电法、激光刻蚀法或等离子体法制备的多孔碳纳米球的至少一种。
所述的浓强酸为浓硫酸、浓硝酸、浓高氯酸中的一种或几种的组合;进一步的,优选为浓硫酸与浓硝酸的混合物。
所述的中强酸为磷酸、酒石酸、亚硫酸、丙酮酸、草酸、亚硝酸、氢氟酸、甲酸中的一种或几种的组合;进一步的,优选为磷酸。
所述的氧化剂为双氧水、重铬酸钾、高锰酸钾、次氯酸钠、硝酸盐中的一种或几种的组合;进一步的,优选为高锰酸钾。
所述的多糖或阴离子型多糖为淀粉、纤维素、糖原、壳聚糖、琼脂、羧甲基纤维素、羧甲基淀粉、羧甲基壳聚糖、海藻酸钠中的一种或几种的组合;进一步的,优选为壳聚糖、羧甲基壳聚糖、海藻酸钠中的一种或两种的组合。
具体实施方式
下面结合实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
实施例1
一种新型多孔纳米碳球复合水凝胶,其制备方法如下:
a)活性多孔碳纳米微球的制备:依次将45份浓硫酸与浓硝酸的混合物、5份磷酸、4份高锰酸钾、2份多孔纳米碳球加入搪瓷釜中,在50~60℃下搅拌12h,冷却至室温,加入44份冰水,然后用30~50nm渗透膜过滤,得到活性多孔纳米碳球;
b)聚多巴胺改性多孔碳纳米球分散液的制备:将5mg多孔纳米碳球加入500mL水中超声分散,制成浓度为1.0mg/mL的多孔纳米碳球分散液,然后加入500mL浓度为1.0mg/mL多巴胺溶液与之混合并搅拌均匀,用碳酸氢钠缓冲液调节体系pH至8.0左右,在搅拌下并加热至50~70℃,反应6~8h,冷却得到聚多巴胺改性多孔碳纳米球分散液;
c)复合水凝胶的制备:称取8份羧甲基壳聚糖,在80~100℃搅拌下至溶解均匀,加入40份步骤b的多巴胺改性多孔碳纳米球分散液,超声分散均匀,用注射器将混合液滴加到3%氯化钙-饱和硼酸水溶液之中,交联成直径为2.5~4mm的复合水凝胶。
实施例2
一种新型多孔纳米碳球复合水凝胶,其制备方法如下:
步骤a、步骤b同实施例1;
c)复合水凝胶的制备:称取10份壳聚糖,在80~100℃搅拌下至溶解均匀,加入45份步骤b的多巴胺改性多孔碳纳米球分散液,超声分散均匀,用注射器将混合液滴加到3%氯化钙-饱和硼酸水溶液之中,交联成直径为2~4mm的复合水凝胶。
实施例3
一种新型多孔纳米碳球复合水凝胶,其制备方法如下:
a)活性多孔碳纳米微球的制备:依次将45份浓硫酸与浓硝酸的混合物、6份草酸、4份重铬酸钾、2份多孔纳米碳球加入搪瓷釜中,在50~60℃下搅拌12h,冷却至室温,加入43份冰水,然后用30~50nm渗透膜过滤,得到活性多孔纳米碳球;
b)聚多巴胺改性多孔碳纳米球分散液的制备:将7.5mg多孔纳米碳球加入500mL水中超声分散,制成浓度为1.5mg/mL的多孔纳米碳球分散液,然后加入500mL浓度为1.5mg/mL多巴胺溶液与之混合并搅拌均匀,用碳酸氢钠缓冲液调节体系pH至8.0左右,在搅拌下并加热至50~70℃,反应6~8h,冷却得到聚多巴胺改性多孔碳纳米球分散液;
c)复合水凝胶的制备:称取10份壳聚糖和海藻酸钠的混合物,在80~100℃搅拌下至溶解均匀,加入40份步骤b的多巴胺改性多孔碳纳米球分散液,超声分散均匀,用注射器将混合液滴加到3%氯化钙-饱和硼酸水溶液之中,交联成直径为3~5mm的复合水凝胶。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。