模块化、高产量的空气处理系统的制作方法

文档序号:11698764阅读:276来源:国知局
模块化、高产量的空气处理系统的制作方法与工艺

分案申请

本申请为分案申请。原申请的申请号为201280017543.3,申请日为2012年2月8日,发明名称为“模块化、高产量的空气处理系统”。

本文描述的主题涉及使用可再生吸附材料从室内空气去除污染物,这些材料包含在大小可变的空气处理系统的一个或多个空气处理模块中。



背景技术:

加热、通风和/或空调(hvac)系统是常见的并且就算不是在全部的现代建筑物、结构和其它人居空间中,也是在这些的大部分中确实是必不可少的。hvac系统致力于通过在空气温度、湿度、成分和清洁度方面提供舒适的且健康的条件将室内空气品质(iaq)维持在在这些空间内的可接受水平。hvac系统构成了建筑物的能量预算的重要部分,尤其是在极端气候下。

hvac系统的加热、通风和空调功能协作以在建筑物或其它结构内的两个或更多人居空间之间维持热舒适、可接受的iaq水平和压力关系。hvac系统,例如,可使用空气处理单元循环空气通过建筑物的各房间,该单元机械地驱使空气流过安装在建筑物内的管道网络,同时调节空气温度和湿度以维持舒适的条件。虽然这些典型的hvac系统具有一个或多个空气过滤器用于捕获小颗粒和/或蒸气,但是,更加彻底的处理远远地超出了这些传统的过滤器的能力。因此,为了维持建筑物的iaq处于可接受的水平,传统的hvac系统排出受污染的室内循环空气的一部分到建筑物外部作为排出空气,并且代之以一定量的新鲜外部空气,也称为“补充空气”。这种用补充空气改变或代替室内循环空气的过程主要是用于抵消由人员、机器(例如,计算机或复印机)、清洁剂、建筑物材料、和/或杀虫剂产生的有机和无机污染物的累积,这会逐渐地损害室内空气的质量和安全性。直接从室内空气去除这些污染物,而不是用来自建筑物外部的补充空气代替室内空气,可减少冷却、除湿和/或加热补充空气所需的能量或者完全消除了对使用补充空气的需要。



技术实现要素:

本公开的实施例可涉及实用的、模块化的并且大小可变的系统,其用于从在hvac系统内的循环空气中去除污染物,利用了可再生的吸附材料和吸附-脱附循环。处理具有低浓度的有机和无机污染物的大量室内空气要求使大量的吸附材料密切接触大量的循环室内空气。可能有利的是,处理大量的循环室内空气而无需大的压力梯度并使用最少的功率和能量消耗。还可能有利的是,使用的空气处理系统在大小方面是可变的并且是相对紧凑的,从而可由人工操作者快捷地安装在现有的建筑物内。而且,不同的建筑物可能具有不同的空气流动要求和污染物水平。为了高效地并实际地制造适和部署合各种不同的建筑物的空气处理系统,可能有利的是,提供基于相对有限组标准产品的模块化空气处理系统设计,这些产品容易制造并且组合后提供用于不同的建筑物大小和空气品质要求的大小可变的解决方案。还可能有利的是,制造空气处理系统,其容易地与现有的hvac系统集成,而不是代替现有的基础设施。

本公开因此涉及空气处理模块,其用于从室内空气去除污染物,该模块可包括一个或多个空气入口、一个或多个空气出口和多个插入件,这些插入件可每一个都包括至少一个吸附材料,其中插入件可被彼此分开地布置以形成在一个或多个空气入口和一个或多个空气出口之间的多个基本上平行的空气流动路径。在一些实施例中,该至少一个吸附材料可被布置成使用热摇摆脱附和压力摇摆脱附中的至少一个而在空气处理模块内再生。在一些实施例中,多个插入件可以薄片状的形式被布置。一些实施例可包括支撑框架,其具有一个或多个结构支撑构件用来支撑多个插入件,其中一个或多个空气入口和一个或多个空气出口由支撑框架和多个插入件形成。一些实施例可包括邻近空气处理模块的进气侧的空气进气增压室,该进气增压室与一个或多个空气入口连通;以及邻近空气处理模块的出气侧的空气出气增压室,该出气增压室与一个或多个空气出口连通。

空气处理模块的实施例也可被构造成包含在加热、通风和/或空调系统内。空气处理模块可包括一个或多个阀,这些阀控制在空气处理模块和加热、通风和/或空调系统之间流动的室内空气的总量。在一些实施例中,该一个或多个阀可基本上使室内空气停止在空气处理模块和加热、通风和/或空调系统之间流动。在其它的实施例中,该一个或多个阀可被用于将在加热、通风和/或空调系统内的室内空气总量的仅一部分分流到空气处理模块。在一些实施例中,空气处理模块可包括将多个插入件以相对于在一个或多个空气入口和一个或多个空气出口之间的多个基本上平行的空气流动路径成一定角度地定位在支撑框架内。空气处理模块还可具有支撑框架的一个或多个空气入口和一个或多个空气出口,这些入口和出口彼此偏置以强迫室内空气在一个或多个空气入口和一个或多个空气出口之间流动以流过至少一个吸附材料。在一些实施例中,至少一个吸附材料可选择由下列各项组成的组:沸石、活性炭、硅胶、多孔氧化铝和金属-有机-框架材料,和/或可从室内空气去除二氧化碳或挥发性有机化合物。

本公开的空气处理模块的实施例还可包括支撑框架,该支撑框架包括入口侧和出口侧,其中一个或多个空气入口被形成在入口侧并且一个或多个空气出口被形成在出口侧。一个或多个空气入口和一个或多个空气出口可被形成为沿着支撑框架的一侧彼此邻近。在一些实施例中,空气处理模块可被定位在加热、通风和/或空调系统的中央冷却单元的下游。在一些实施例中,空气处理模块可包括传感器以测量温度、压力、流速和/或气体组成。

本公开还可涉及用于从室内空气去除污染物的空气处理系统。这些系统可包括多个空气处理模块,这些模块可每一个都具有一个或多个空气入口、一个或多个空气出口和一个或多个插入件。根据一些实施例,插入件可每一个都包括至少一个吸附材料。该至少一个吸附材料可被布置成使用热摇摆脱附和压力摇摆脱附中的至少一个而在多个空气处理模块的每一个内再生。在一些系统实施例中,多个空气处理模块可被彼此邻近地对齐并且与公共入口增压室和公共出口增压室连通并且多个空气处理模块的一个或多个插入件可形成多个基本上平行的空气流动路径。在一些实施例中,一个或多个插入件可以薄片状的形式被布置。一些系统实施例可包括以竖直堆和/或水平地布置多个空气处理模块。本公开的空气处理系统可被定位在商业的、住宅的、工业的、军用的或公共建筑物内,这取决于特定的实施例。

本公开还考虑了用于从室内空气去除污染物的方法。该方法可包括提供多个空气处理模块,其中每个空气处理模块可具有一个或多个空气入口、一个或多个空气出口和一个或多个插入件,插入件每一个可包括至少一个吸附材料。该至少一个吸附材料可被布置成使用热摇摆脱附和压力摇摆脱附中的至少一个而在多个空气处理模块的每一个内再生。该方法还可包括将多个空气处理模块彼此邻近地布置,其中多个空气处理模块的一个或多个插入件可形成多个基本上平行的空气流动路径。该方法还可包括引导室内空气从空气进气增压室流入多个空气处理模块的一个或多个空气入口,流过多个基本上平行的空气流动路径中的一个或多个,流过至少一个吸附材料中的一个或多个并流过一个或多个空气出口而进入空气出气增压室。在一些实施例中,空气入口增压室和空气出口增压室可被构造成与加热、通风和/或空调系统连通。在一些实施例中,一个或多个插入件可以薄片状的形式被布置。

本文描述的主题的一个或多个变化的细节在附图和下面的描述中公开。本文描述的其它的特征和优点可通过该描述和附图、以及通过权利要求而易于理解。

附图说明

附图被包含在内并构成本说明书的一部分,附图示出了本文公开的主题的某些方面,并且与具体描述一起,有助于解释与所公开的实施例相关联的原理中的一些。附图中:

图1示出了根据本公开的一些实施例的hvac系统。

图2a示出了根据本公开的一些实施例的空气处理模块的实施例。

图2b示出了根据本公开的一些实施例的竖直堆放的图2a的多个空气处理模块。

图3示出了根据本公开的一些实施例的空气处理模块的实施例。

图4a和4b示出了根据本公开的一些实施例的空气处理模块的实施例。图4a示出了空气处理模块的入口端而图4b示出了空气处理模块的出口端。

图5a和5b示出了根据本公开的一些实施例的空气处理模块的实施例。图5a示出了空气处理模块的入口端而图5b示出了空气处理模块的出口端。

图6示出了根据本公开的一些实施例的空气处理模块的实施例。

图7示出了根据本公开的一些实施例的多个空气处理模块的布置。

图8示出了根据本公开的一些实施例的多个空气处理模块的布置。

图9示出了根据本公开的一些实施例的多个空气处理模块,这些空气处理模块被竖直堆放并且与公共入口增压室和公共出口增压室流体连通。

图10示出了根据本公开的一些实施例的多个空气处理模块,这些空气处理模块被竖直堆放并且与公共入口增压室和公共出口增压室流体连通。

图11示出了根据本公开的一些实施例的多个空气处理模块,这些空气处理模块被水平布置并且与公共入口增压室和公共出口增压室流体连通。

图12示出了根据本公开的一些实施例的空气处理模块的实施例。

在各个附图中相同的附图标记表示相同的元件。

具体实施方式

在本文中提供了使用布置成紧凑的、平行的构造的高容量、可再生吸附材料从室内空气去除污染物的设备、系统和方法。本公开的一些实施例可涉及模块化且大小可变的空气处理模块,这些空气处理模块具有一个或多个可移除的插入件,插入件包括一个或多个吸附材料。空气处理模块可被竖直地堆放和/或水平地布置,从而形成紧凑的空气处理系统,以提供大表明面积以从大量的循环室内空气去除污染物。本公开的实施例可提供空气处理系统,该系统使用高容量吸附材料去除污染物改善了室内空气品质,吸附材料例如是分子筛,污染物例如二氧化碳(co2)。

图1示出了hvac系统100的基本构造。在一些实施例中,hvac系统100可被定位在建筑物、车辆或其它结构中并构造成用于对人居空间110进行加热、通风和/或空调。hvac系统100的一些实施例可被用于对建筑物、车辆或其它结构中的多个人居空间110进行加热、通风和/或空调。根据本公开的建筑物可包括但不限于办公楼、住宅楼、商场、购物中心、酒店、医院、餐馆、机场、火车站和/或学校。根据本公开的车辆可包括但不限于汽车、船舶、火车、飞机或潜水艇。

在一些实施例中,hvac系统100可包括中央空气处理单元120和空气处理系统150。空气处理系统150可被定位在中央空气处理单元120的上游或中央空气处理单元120的下游,如图1中所示。中央空气处理单元120和空气处理系统150可彼此流体连通,以及通过管道网络160与人居空间110流体连通。在一些实施例中,流入和流出空气处理系统150的室内空气的总量可由一个或多个阀自动和/或手动地控制。阀可被定位在管道160内并在空气处理系统150的上游和/或下游。在一些实施例中,阀可用于将空气处理系统150与hvac系统100的其它部分隔离开,使得在hvac系统100和空气处理系统150之间没有流体连通并且进出空气处理系统150的空气流动基本上被停止。

如在图1中示出的,室内空气可作为从人居空间110的一个或多个进气170(例如,通风口和/或管道)接收的返回空气流入管道160并且流向中央空气处理单元120,如箭头130所示。空气处理单元120可尤其包括鼓风机,用于循环空气通过管道160并进出人居空间110以及加热或冷却元件和过滤器架或室以加热、冷却和清洁空气。从空气处理单元120释放的空气可称为供应空气,其流动在图1中由箭头140指示。在本公开的一些实施例中,系统100和/或空气处理系统150的一个或多个阀可被调节以允许供应空气的一些或全部被转移到空气处理系统150并且此后与流向人居空间110的供应空气的主流再汇合,如箭头140所示。本公开的空气处理系统150的实施例可被构造成去除不期望的气体、蒸气和污染物,包括但不限于挥发性有机化合物(voc)和在人居空间110内由人员产生的co2。在人居空间110内发现的可由空气处理系统150去除的气体污染物气体可包括但不限于一氧化碳、硫氧化物和/或氮氧化物。系统100的一些实施例可被构造成空气处理系统150能够从接收自人居空间110的循环空气去除足够的污染物,从而减少或消除用来自建筑物、车辆或其它结构外部的补充空气代替系统100内循环空气的任一部分的需求。

根据一些实施例,空气处理系统150可通过强迫空气流过定位在空气处理系统150内的一个或多个吸附材料来从接收自人居空间110的循环室内空气去除污染物。在一些实施例中,一个或多个吸附材料可在空气处理系统150内被定向以提供基本上平行的流动路径,空气可被引导通过这些路径。当循环室内空气流过该一个或多个吸附材料时,在空气中的一个或多个污染物的分子可被吸附材料保持并捕获在吸附材料内。吸附材料可包括但不限于沸石和其它分子筛、活性炭、硅胶、多孔氧化硫和金属-有机-框架材料。

在一些实施例中,吸附材料中的一个或多个可被再生。更具体地说,当污染物在吸附材料的表面上积聚时,该材料可最终变为污染物饱和,使得不能再吸附额外的污染物。在饱和之前可由吸附材料捕获的污染物总量可取决于包含在空气处理系统150内的吸附材料的大小、厚度和/或体积,以及许多其它参数,包括但不限于,吸附剂的类型、污染物的种类和浓度以及温度。在饱和时,本公开的实施例可被构造成再生或者从吸附材料去除污染物。一些实施例可使用热摇摆脱附和/或压力摇摆脱附来再生吸附材料。这种再生可通过升高吸附材料的温度和/或使相对惰性清扫气体流过吸附材料来使吸附材料释放所捕获的污染物。在一些实施例中,本公开的吸附材料可在空气处理系统150内被再生而无需移除。

用在本公开的空气处理模块和系统中的吸附材料的实施例可根据设计要求被构造成各种形状和大小。在一些实施例中,吸附材料可被构造成薄片材料,该薄片材料通常是方形和/或矩形形状。吸附材料的薄片可全部由吸附材料形成并被硬化以提供刚性的吸附材料薄片和/或可被包括在刚性支撑框架内。在一些实施例中,吸附材料可喷洒、撒或以其它方式被附接到多孔刚性支撑材料薄片,例如筛。吸附材料的具体尺寸可取决于hvac系统的要求并根据hvac系统的要求而变化,空气处理系统150包含在该hvac系统内。

在一些实施例中,空气处理系统150内的吸附材料的一个或多个插入件可相当薄以消除使用大压力以迫使空气通过吸附材料的需要。另一方面,那些同样的实施例也可要求吸附材料不能太薄以至于减少其足以捕获和保持污染物的能力。另外,如果吸附材料的插入件太薄,那么也可能会有不足够的吸附材料质量在延长的时间长度上收集所要求量的污染物,尤其是在其中一个目标污染物(例如co2)以相对大量发生时。因此,与空气处理系统150的实施例一起使用的吸附材料的插入件的大小、形状和数量可基于平衡各种不同的因素而确定,这些因素包括但不限于流动阻力、压力梯度、吸附能力和物理布置。

本公开的实施例可通过以基本上平行流动构造布置两个或更多吸附材料插入件来实现期望的流动产量和阻力要求。在本公开的平行流动构造中,通过两个或更多插入件的气流可额外地贡献于产生通过空气处理系统的总空气流。在一些实施例中,包括吸附材料的一个或多个插入件的大小可被构造成用于由人工操作者容易运输并手动安装。插入件的一些实施例可被构造成薄片状形式。例如,本公开可用于吸附材料的大体上矩形的插入件,这在每一侧在长度上可小于1.5米并且重量不超过几十千克。一些实施例可使用吸附材料的薄插入件以避免过大的气流阻力。根据一些实施例,例如,插入件厚度可不多于几厘米。根据本公开的插入件也可每个重约10kg。在装有沸石的情况下,其具有约1的密度,10kgc可以是约70cm×70cm×2cm。四十个这种大小的插入件可等于20的总表面面积,并且使空气流过基本上平行构造的四十个插入件的需要可要求极端高效的布置,如下面更具体地解释的。

空气处理系统150的实施例可包括两个或更多空气处理模块(见,例如,图2),这些空气处理模块被竖直地和/或水平地布置以通过平行地提供两个或更多吸附材料插入件来为循环室内空气的更高产量提供空间。每个空气处理模块可具有一个或多个吸附材料插入件。本公开的实施例可以高度紧凑的布置方式构造吸附材料插入件的几何布局,从而以大小可变的且相对谨慎的占地面积来提供许多、可能是成百上千个的吸附材料插入件。

可通过考虑在普通办公楼中要求的吸附材料和气流的实际量来理解与以平行的且紧凑的构造布置许多吸附材料插入件相关联的优点。在正常条件下,普通人每小时可产生约40-50克的co2。为了抵消co2的这种积聚,用于200人的人居空间的hvac系统的空气处理系统可被设计为每小时吸附和去除约10kg的co2。因为co2的密度是约,所以在这个示例中的co2的体积将等于5。因此,如果空气中的co2百分比要被保持低于0.1%,那么空气处理系统将不得不每小时净化相当于至少5000的室内空气以从人居空间去除5的co2。

尽管已知分子筛在正常温度和高浓度条件下可吸附的co2占它们重量的最多20%,但是现实中更适合的是假设更小的能力,这是由于各种不同的因素,包括有限的温度摇摆范围,低浓度条件、湿度的存在和污染物的积聚。每循环吸附剂质量的5-10%的吸附能力是正常的,尽管对于一些吸附剂和条件来说更小的数字可能是更现实的。因此,吸附材料的插入件的尺寸可被设置为收集在单个吸附-脱附循环内所建立的co2的量。被设计用于在每小时10kg的co2下连续2小时的操作和再生循环的空气处理系统可要求400kg的吸附剂,并且如果吸附能力低于5%则会更多。

图2a示出了根据本公开的空气处理模块200的实施例。空气处理模块200可包括支撑框架240,以及在一些实施例中大体上被构造为矩形棱柱,如在图2a中所示。支撑框架240可具有侧壁242、入口端壁244、出口端壁245、顶板246和底板248。在一些实施例中,支撑框架240,以及用于本公开的任何空气处理模块的支撑框架,可由单个整块材料板形成或者通过刚性地将各种板(242,244,245,246,248)连接在一起来形成。支撑框架240,以及用于本公开的任何空气处理模块的支撑框架,可由任意一个或多个适合材料制成,包括但不限于金属、纤维玻璃或塑料。支撑框架240也可包括一个或多个空气入口210。空气入口210可被形成在入口端壁244内,或者在一些实施例中,可由入口端壁244、侧壁242和顶板246或底板248形成并形成在它们之间。也即,入口端壁244可仅沿着支撑框架240的高度h部分地延伸。支撑框架240也可包括一个或多个空气出口220。空气出口220可被形成在出口端壁245内,或者在一些实施例中,可由出口端壁245、侧壁242和顶板246或底板248形成并形成在它们之间。也即,出口端壁245可仅沿着支撑框架240的高度h部分地延伸。在图2a中示出的空气处理模块200的实施例包括形成(例如,机加工)在入口端壁244内的一个空气入口210以及形成(例如机加工)在出口端壁245内的一个空气出口220。在一些实施例中,如在图2a中所示,空气入口210可在入口端壁244内被形成为朝向顶板246,并且空气出口220可在出口端壁245内被形成为朝向底板248,使得空气入口210和空气出口220彼此错开。

空气处理模块200的实施例也可包括插入件230。插入件230可被部分地或全部地定位在支撑框架240内,并在一些实施例内,可以薄片状形式布置。在一些实施例中,插入件230可横过支撑框架240的整个长度l和/或支撑框架240的整个宽度w。在一些实施例中,插入件230可被基本上定位在支撑框架240的高度h的中点,如在图2a中所示。虽然图2a示出了插入件230被定向为基本上平行于支撑框架240的顶板246和/或底板248,但是本公开的实施例考虑了插入件230在支撑框架240内的各种不同的定向。插入件230可被形成为支撑框架240的一体部分或者被可移除地插入到支撑框架240内,例如通过从支撑框架240的一侧或一端将插入件230滑动到支撑框架240内。在这种实施例中,侧壁242、入口端壁244和/或出口端壁245可移除以提供开口供插入件230的按需插入和/或移除。插入件230可由任何合适装置保持在支撑框架240内,包括但不限于,附接到侧壁242、入口端壁244和/或出口端壁245的夹子,或者形成在它们中的槽或轨。这种构造也可应用于本公开的任何实施例的任何插入件和支撑框架。

根据本公开的实施例,插入件230可以是和/或包括一个或多个吸附材料,循环室内空气经过上述吸附材料。在一些实施例中,插入件230可以是多孔材料,例如刚性筛或托盘,一个或多个吸附材料可被附接到其上或以其它方式由其支撑。在一些实施例中,插入件230可以是一个或多个吸附材料的刚性体。

在操作中,可使来自人居空间(见图1)的循环室内空气在空气入口210从管道(见图1)进入空气处理模块200,流过插入件230并在空气出口220离开空气处理模块200。根据图2a中示出的实施例,因为出口端壁245在插入件230上方是关闭的,所以强迫进入空气入口210的循环室内空气流过插入件230以到达空气出口220。当循环室内空气流过插入件230时,其密切接触一个或多个吸附材料并且一个或多个目标污染物被吸附材料从循环室内空气去除。

图2b示出了空气处理系统285,其具有竖直堆放的十一个空气处理模块200的构造。空气处理模块200可被布置成建立平行的气流路径或通道。在一些实施例中,每个空气处理模块200的空气出口220可馈送入公共出口增压室270。公共入口增压室(未示出)可被提供在空气入口210处以给每个空气处理模块200馈送循环室内空气。空气处理系统285的一些实施例可包括连接器290,该连接器分别延伸在空气入口210和空气出口220以及公共入口增压室(未示出)和公共出口增压室270之间。

图3示出了空气处理模块300的实施例,其具有支撑框架340和定位在支撑框架340内的插入件330。支撑框架340可具有侧壁342、入口端槽道344、出口端槽道345、顶板346和底板348。空气入口310可被形成在入口端槽道344的正下方,并且由侧壁342、入口端槽道344和底板348形成并形成在它们之间。空气出口320可形成在出口端槽道345的正上方,并由侧壁342、出口端槽道345和顶板346形成且形成在它们之间。入口端槽道344可被构造成顶板346的一部分或者构造成被刚性地附接到顶板346的单独部件。出口端槽道345可被构造成底板348的一部分或被刚性附接到底板348的单独部件。在图3中,侧壁342被移除以说明插入件330在支撑框架340内的布置。如在图3中所示,插入件330可被定位成相对于顶板346和/或底板348成一定角度。在一些实施例中,插入件330被可移除地插入支撑框架340且大小被合适地设置以由入口端槽道344和出口端槽道345在支撑框架340保持就位,如图3所示。插入件330可以薄片状形式布置。

在操作中,可使来自人居空间(见图1)的循环室内空气在空气入口310从管道(见图1)进入空气处理模块300,流过插入件330并在空气出口320离开空气处理模块300。根据图3中所示,插入件330在支撑框架340内的定向阻挡了进入空气入口310的循环室内空气的流动路径,所以使室内空气流过插入件330以到达空气出口320。当循环室内空气流过插入件330时,其密切接触包含在插入件330内或上的一个或多个吸附材料并且一个或多个目标污染物被从循环室内空气去除。如在图3中所示,空气入口310和空气出口320在竖直方向上不是像图2a中的实施例那样彼此错开。在一些实施例中,因为可能必须将大量的空气处理模块300布置在一起,所以每个空气处理模块300的高度h可通过调节插入件330在支撑框架340内的角度而被最小化。插入件330可通过在一个或两个侧壁342内的开口被插入和/或移除,或者通过移除侧壁342、入口端槽道344或出口端槽道345而被插入和/或移除。

图图4a和4b示出了根据本公开的空气处理模块400的实施例。空气处理模块400可包括支撑框架440,其具有侧壁442、顶板446和底板448。在一些实施例中,空气处理模块400可具有两个或更多插入件430,插入件430部分地或全部地定位在支撑框架440内并且基本上横过支撑框架440的全部长度l和宽度w。插入件430根据一些实施例可被以薄片状形式布置,如在图4a和4b中所示。在一些实施例中,两个或更多插入件430可基本上彼此平行并且包括一个或多个吸附材料。插入件430可由形成在支撑框架440的侧壁442上的突片450和/或由入口端挡板411和出口端挡板421在支撑框架440内保持就位。空气处理模块400的一些实施例可定位两个或更多插入件430在支撑框架440内,它们的取向基本上平行于空气处理模块400的顶板446和/或底板448。空气入口410可由侧壁442和插入件430形成并形成在它们之间,如图4a所示。两个或更多空气出口420可由侧壁442、顶板446、底板448和插入件430形成并形成在它们之间,如在图4b中所示。在一些实施例中,一个或多个入口端挡板411可被构造在插入件430和顶板446和底板448和侧壁442之间,如在图4a中所示。在一些实施例中,一个或多个出口端挡板421可被构造在插入件430和顶板446和底板448和侧壁442之间,如在图4b中所示。挡板(411、421)可一体地形成为侧壁442、顶板446和/或底板448的一部分或者可以是被刚性地附接到侧壁442、顶板446和/或底板448的单独部件。

在操作中,可使来自人居空间(见图1)的循环室内空气在空气入口410从管道(见图1)进入空气处理模块400,流过插入件430并在空气出口420离开空气处理模块400。如在图4a和4b中所示,侧壁442和出口端挡板421协作以提供封闭的流动路径,循环空气在经过空气入口410之后进入该路径。结果,循环室内空气被迫向上或向下流过插入件430以到达空气出口420。换句话说,在入口侧,仅允许空气流入在插入件430之间的空间,在那里可定位公共入口增压室(未示出),但是不能在插入件430之间离开空气处理模块400,因为另一端被出口端挡板421阻挡。不过,因为在插入件430之上和之下有空气出口420,所以空气被迫流过插入件430,由此空气中的污染物被插入件430中的吸附材料捕获并保持。在一些实施例中,如在图4a和4b中所示,在空气处理模块400内的空气流动路径可基本上彼此平行。

图图5a和5b示出了根据本公开的空气处理模块500的实施例。空气处理模块500可包括支撑框架540,其具有侧壁542、顶板546和底板548。在一些实施例中,空气处理模块500可具有两个或更多插入件530,插入件530部分地或全部地定位在支撑框架540内并且基本上横过支撑框架540的全部长度l和宽度w。插入件530根据一些实施例可被以薄片状形式布置。在一些实施例中,两个或更多插入件530可基本上彼此平行并且包括一个或多个吸附材料。插入件530可由形成在支撑框架540的侧壁542上的突片550(见图5b)和入口端挡板511和出口端挡板521在支撑框架540内保持就位且被保持在它们之间。空气处理模块500的一些实施例可定位两个或更多插入件530在支撑框架540内,它们的取向基本上平行于空气处理模块500的顶板546和/或底板548。两个或更多空气入口510可由侧壁542、顶板546、底板548和插入件530形成并形成在它们之间,如图5a中所示。两个或更多空气出口520可由侧壁542、顶板546、底板548和插入件530形成并形成在它们之间,如在图5b中所示。在一些实施例中,两个或更多入口端挡板511可被构造在侧壁542、顶板546、底板548和插入件530之间,如在图5a中所示。在一些实施例中,一个或多个出口端挡板521可被构造在侧壁542、顶板546、底板548和插入件530之间,如在图5b中所示。挡板(511、521)可一体地形成为侧壁542、顶板546和/或底板548的一部分或者可以是被刚性地附接到侧壁542、顶板546和/或底板548的单独部件。

在操作中,可使来自人居空间(见图1)的循环室内空气在空气入口510从管道(见图1)进入空气处理模块500,流过插入件530并在空气出口520离开空气处理模块500。如在图5a和5b中所示,侧壁542和出口端挡板521可协作以提供封闭的流动路径,循环室内空气在经过空气入口510之后进入该路径。结果,空气被迫向上或向下至少流过在该封闭流路径的正上方和正下方的插入件530,以到达空气出口520中的一个或多个。换句话说,空气从公共入口增压室(未示出)流入空气入口510并进入在插入件530之间的平行流动路径。因为在插入件530之间的平行流动路径由侧壁542和出口端挡板521封闭,所以空气被迫向上和向下流过邻近的插入件530对并从空气出口520中的一个或多个流出,由此空气中的污染物由插入件530的吸附材料捕获并保持。因此,根据本公开的一些实施例,例如在图5a和5b中示出的空气处理模块500,大量的包括用于去除污染物的一个或多个吸附材料的插入件可被提供在紧凑空间内,建立了大量的平行流动路径,这些路径带有吸附材料的大的总有效截面面积,大量的循环空气可穿过这些截面面积。

图6示出了根据本公开的空气处理模块600的实施例。空气处理模块600可包括支撑框架640,其具有侧壁642、顶板646、底板648和背板(未示出)。在一些实施例中,支撑框架640可由定位在大约支撑框架640的宽度w的中点的或定位在沿着支撑框架640的宽度w的一些其它位置的隔板670划分。空气处理模块600的一些实施例可被构造成带有定位在空气处理模块600的同一侧上的一个或多个空气入口610和一个或多个空气出口620,如在图6中所示。在一些实施例中,空气处理模块600可具有两个或更多插入件630,它们被部分地或全部地定位在支撑框架640内并且定位到隔板670的一侧以形成一个或多个空气入口610。插入件630根据一些实施例可以薄片状形式布置。插入件630可基本上横过支撑框架640的整个长度l和宽度w。在这种实施例中,插入件630可具有凹口或切除部以容纳隔板670。在一些实施例中,插入件630可横过整个长度l,但是仅从侧壁642延伸到隔板670。在一些实施例中,一个插入件可延伸支撑框架640的整个宽度w并且一个插入件可仅在侧壁642和隔板670之间延伸。

两个或更多插入件630可基本上彼此平行和/或平行于空气处理模块600的顶板646和/或底板648并且包括一个或多个吸附材料。插入件630可由形成在支撑框架640的侧壁642上的突片650和入口端挡板611和出口端挡板621在支撑框架640内维持就位并且被维持在它们之间,如在图6中所示。空气处理模块600的一些实施例可将两个或更多插入件630定位在支撑框架640内,其取向相对于空气处理模块600的长度l基本上是水平的。两个或更多的空气入口610可由侧壁642、隔板670、顶板646、底板648和/或插入件630形成并形成在它们之间,如在图6中所示。两个或更多空气出口620可由侧壁642、隔板670、顶板646、底板648和/或插入件630形成并形成在它们之间,如在图6中所示。在一些实施例中,两个或更多入口端挡板611可被定位在侧壁642、隔板670、顶板646、底板648和/或插入件630之间,如在图6中所示。在一些实施例中,一个或多个出口端挡板621可被构造在侧壁642、隔板670、顶板646、底板648和/或插入件630之间,如在图6中所示。挡板(611、621)可一体地形成为侧壁642、顶板646和/或底板648的一部分,或者可以是被刚性地附接到侧壁642、隔板670、顶板646和/或底板648的单独部件。

在操作中,可使来自人居空间(见图1)的循环室内空气在空气入口610从管道(见图1)进入空气处理模块600,流过插入件630并在空气出口620离开空气处理模块600。如在图6中所示,侧壁642和出口端挡板621协作以提供在插入件630之间的封闭流动路径,循环室内空气在穿过空气入口610之后进入该路径。结果,空气被迫向上或向下至少流过在该封闭流动路径正上方和正下方的插入件630。在一些实施例中,因为入口端挡板611可在入口侧被定位在隔板670和侧壁642之间,所以已经穿过插入件630的空气被引导向空气出口620并从其流出。这种构造以及其它类似的实施例在各种不同的环境中是有用的,包括但不限于当整个系统布局要求公共入口增压室和公共出口增压室沿着空气处理模块的布置的同一侧彼此邻近时。在一些实施例中,将增压室一起放置在空气处理模块的同一侧可使在空气处理模块600的相对侧上的入口和/或出口可用于再生或提供用于维修和/或维护的进口。

和空气处理模块200的实施例一样,空气处理模块300、400、500和600的实施例也可竖直地和/或水平地布置。例如,图7示出了空气处理模块的混合布置700的实施例,其中插入件被竖直地而不是水平地定向。虽然操作原理和空气流动方式基本上和采用水平定向的插入件的模块一样,但是竖直定向可在机械角度方面不同。即,竖直的插入件可具有若干潜在的优点,包括插入件不太可能因为它们自身的重量而在中点弯曲,以及因为竖直的插入件并排地站立而不是站在彼此的顶部上,所以大量的插入件也不会必然建立高的竖直堆。高的竖直堆具有若干机械缺点,包括但不限于,难以接触上面的模块以进行维修和维护以及由于累积的重量,在堆的下面的模块上有大的重量载荷。在水平布置中还可能有更少的温度和压力变化。另一方面,水平布置要求了更大的占地面积,这种占地面积可能是不可获得的或者不可取的。

图8示出了空气处理模块的混合布置800的实施例,其中插入件被水平定向但是以彼此并排相连的竖直柱堆叠。对于本文讨论的空气处理模块实施例中的任一个可在竖直地或水平地定向插入件之间进行选择。

将本公开的多个空气处理模块集成到hvac系统内可通过将模块附接到公共入口增压室和/或公共出口增压室来实现,所述增压室中的任一个或两个可包括阀和/或百叶窗的组合,以及风扇或鼓风机,用以在三个可能的操作模式中的一个期间控制空气的流动。更具体地说,在一些实施例中,根据本公开的空气处理模块和/或空气处理模块的布置(例如,竖直堆)可具有至少三个操作模式,包括(1)主动吸附模式、(2)脱附/再生模式和/或(3)关闭或断开。在模式(1),室内空气可从管道(见图1)流入空气处理系统,经过空气处理模块并回到管道。在这个模式中,污染物可由在空气处理模块内的吸附材料捕获并保持并且经处理的空气可被返回到hvac系统的管道。

在模式(2)中,空气处理模块可被布置以通过热或另一形式的能量或通过压力摇摆脱附来再生,从而使被捕获并保持在吸附材料内的污染物被释放。在一些实施例中,通过再生被释放的污染物可通过流动的清扫气体或通过将被释放的气体泵送走并将污染物置于建筑物、车辆或其它结构的外部来从空气处理系统去除。一些实施例可通过使被加热的清扫气体流过空气处理系统并接着引导被加热的清扫气体流到外部来加热吸附材料。清扫气体可在增压室内被加热或者在外部用任何可用的热源加热,包括但不限于太阳能、电、燃气、油、热水和/或所谓的废热,例如来自压缩机或发动机的热。在一些实施例中,两个或更多这种热源的组合可被用于在变化的条件下实现所要求的性能和经济目标。

在模式(3)中,通过关闭任何互连的阀或百叶窗,空气处理模块可从hvac系统断开并且与清扫气体源断开。空气处理系统与hvac系统的断开和/或隔离可能是必须的,例如,在空气处理系统正经历维护和/或修理时。另一可能的操作模式,模式(4),可存在于一些实施例中并且可称为“冷却”模式,其中在被重新连接到hvac系统之前,再生的空气处理系统被允许冷却,例如,利用或不利用外部气流,以防止由仍然温暖的、再生空气处理系统对内部空气的不期望的加热。

图9示出了空气处理系统900的实施例,其被构造成带有一堆空气处理模块950、公共进口增压室975和公共出口增压室995。在一些实施例中,例如在图9中示出的那个,公共进口增压室975和公共出口增压室995可被布置在由空气处理模块950形成的竖直堆的相对侧上。公共进口增压室975和公共出口增压室995可每一个都在竖直堆的顶部处被封闭。在操作中,循环室内空气902可在公共进口增压室975的底部进入并流入在空气处理模块950中的每一个的空气入口(未示出)。在空气处理模块950内部,可使循环室内空气902经过包含在每个空气处理模块950内的一个或多个插入件,离开在空气处理模块950中的每一个中的空气出口(未示出)并流入公共出口增压室995作为供应空气904。供应空气904被向下引导到公共出口增压室995的底部并重新加入到hvac系统的主空气流中。进入公共进口增压室975的循环室内空气902以及离开公共出口增压室995的供应空气904的速度和量可由中央空气处理单元(此处未示出)管理,该单元具有风扇、阀、百叶窗和控制该单元的操作的气体控制器。

如在图10中所示,本公开的一些实施例可将公共进口增压室1075和公共出口增压室1095布置在堆的同一侧上,例如,在空气处理模块1050被构造成类似于图6所示的那些时。如在图11中所示,本公开的一些实施例可包括水平空气处理系统,其具有连接在一起的多个竖直定向的空气处理模块1150。在这种实施例中,公共进口增压室1175和公共出口增压室1195也可被水平地定位。

本公开的一些实施例可涉及空气处理模块1200,其包括支撑框架1240,该支撑框架具有侧壁1242、顶板1246和底板1248。空气处理模块1200也可包括两个或更多插入件1230,它们在支撑框架1240内被定向成相对于顶板1246和/或底板1248成一定角度。在一些实施例中,邻近的插入件1230可沿着插入件1230的边缘彼此接触。插入件1230的一些实施例可以薄片状的形式布置。插入件1230可由突片或槽道(未示出)在支撑框架1240内被保持就位。支撑框架1240可具有完全敞开的入口端1270和完全敞开的出口端1280。插入件1230的取向可形成空气入口1210和空气出口1220,如在图10中所示。插入件1230可以从支撑框架1240的一个端部或通过移除侧壁1242从一侧被可移除地插入到支撑框架1240内。

在操作中,可使来自人居空间(见图1)的循环室内空气在空气入口1210从管道(见图1)进入空气处理模块1200,流过插入件1230,该插入件1230形成每个空气入口1210,并在空气出口1220离开空气处理模块1200。如在图10中所示,在支撑框架1240中每对成角度的插入件1230形成空气入口1210,并且同时阻挡进入该空气入口1210的循环室内空气的流动路径。结果,使空气向上或向下流过形成空气入口1210的两个插入件1230中的一个,空气正是从该空气入口1210进入空气处理模块1200。当空气流过插入件1230时,其密切接触插入件1230的一个或多个吸附材料,并且一个或多个目标污染物被从空气去除。和所有前面描述的空气处理模块实施例一样,空气处理模块1200的实施例可被布置成形成多个空气处理模块的空气处理系统。

根据本公开的本文描述的空气处理系统的一些实施例可包括两个或更多单独的竖直堆或水平的布置,这些堆或布置可被连接到公共增压室但被独立地操作和关闭。这种实施例允许一个(或多个)空气处理系统经历再生或关闭,同时另一个空气处理系统仍然工作以处理空气流,因此提供了不中断的服务。公共增压室可被设计为通过打开和关闭合适的阀、百叶窗和/或鼓风机,以及用于控制空气流和温度的任何气体元件,自动地在竖直堆或水平布置之间切换。根据本公开的空气处理系统的一些实施例可具有用于监视系统功能并触发操作模式之间的自动切换的传感器和仪表,包括但不限于co2计、温度计、流量计和压力计。切换功能中的一个包括但不限于当在空气出口或在公共出口增压室中检测到污染物水平升高时将空气处理系统从工作模式转换到再生模式。

前面描述中公开的实施例不代表符合本文描述的主题的全部实施例。相反,它们仅是符合与所描述的主题的多个方面的一些示例。尽管上面具体描述了一些变化,但是其它的改进或添加也是可行的。具体来说,可在本文公开的那些的基础上提供另外的特征和/或变化。例如,上面描述的实施例可涉及所公开特征的各种不同的组合和子组合和/或上面公开的若干其它特征的组合和子组合。而且,在附图中描述的和/或在本文中描述的逻辑流不必要求所示出的特定顺序,或者相继顺序,以实现可取的结果。其它的实施例可在所附权利要求的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1