喷嘴的制作方法

文档序号:20917045发布日期:2020-05-29 13:40阅读:155来源:国知局
喷嘴的制作方法

本申请涉及一种喷嘴,尤其是在电子加工领域中使用的喷嘴。



背景技术:

随着电子产品不断的轻薄微小化,对电路板印刷工艺的要求也越来越高。因此需要更精密的分配加工材料的装置,用于分配非常小体积的电路板加工材料。有些加工材料为粘稠的流体,例如焊膏,树脂等。一种分配这种粘稠的流体的方案是设置一个空腔,空腔和喷嘴连通,空腔中含有流体,通过活塞往复移动,挤压空腔中的流体,使流体从喷嘴的出口挤出。由于粘稠的流体流动性差,使得这种分配流体的方案具有一定的缺陷,例如分配效率低,不易控制,容易造成堵塞等。



技术实现要素:

为改善了以上问题,本申请提供了本申请提供一种喷嘴和喷嘴组件。

根据本申请的第一方面,提供一种喷嘴,所述喷嘴包括:

喷嘴通道,所述喷嘴通道具有气流入口以及出口;

流体通道,所述流体通道具有流体通道入口以及流体通道出口,其中流体通道入口与流体来源连通,使流体能够进入流体通道,流体通道出口与喷嘴通道连通,使得流体能够进入所述喷嘴通道中;

其中,通过从气流入口施加的气流能够将所述喷嘴通道中的流体从所述出口压出。

如上所述的喷嘴,所述喷嘴通道还具有流体入口;

所述流体通道出口与喷嘴通道的流体入口连接,使得流体能够进入所述喷嘴通道中。

如上所述的喷嘴,所述流体为粘稠的流体,所述流体的黏度范围为1000-150,000cps。

如上所述的喷嘴还包括:活塞容腔,所述活塞容腔用于容纳活塞,所述活塞容腔与所述喷嘴通道的气流入口连通。

如上所述的喷嘴,所述活塞容腔与所述流体通道分离设置。

如上所述的喷嘴,所述活塞容腔的底部呈圆滑过渡的曲面。

如上所述的喷嘴,所述气流入口位于所述活塞容腔的下方。

如上所述的喷嘴,所述流体通道入口设置在所述喷嘴的侧壁上。

如上所述的喷嘴,所述流体通道自所述流体通道入口朝向流体通道出口向下倾斜延伸。

如上所述的喷嘴,所述喷嘴通道具有喷嘴通道上段以及喷嘴通道下段,所述喷嘴通道下段比所述喷嘴通道上段更细,其中所述喷嘴通道上段与所述气流入口连通。

根据本申请的第二方面,提供一种喷嘴组件,所述喷嘴组件包括:

壳体,所述壳体中设有容腔;

套筒,所述套筒设置在所述壳体的容腔中,所述套筒的内壁限定出活塞通道,在所述所述套筒的外壁与所述壳体的内壁之间设有流体容腔;

喷嘴,所述喷嘴设置在所述壳体的容腔中,并设置在所述套筒的下方,所述喷嘴包括:

喷嘴通道,所述喷嘴通道具有气流入口以及出口;

流体通道,所述流体通道具有流体通道入口以及流体通道出口,其中流体通道入口与所述流体容腔连通,使流体容腔中的流体能够进入流体通道,流体通道出口与喷嘴通道连通,使得流体能够进入所述喷嘴通道中;

活塞容腔,所述活塞容腔与所述喷嘴通道的气流入口连通,并且与所述活塞通道连通,

活塞,所述活塞能够在所述活塞通道和所述活塞容腔中上下移动,从而通过所述喷嘴通道吸气和排气,以将所述喷嘴通道中的流体从所述喷嘴通道的出口压出。

如上所述的喷嘴组件,其特征在于,所述活塞具有头部,所述头部的形状被设置为与所述喷嘴的活塞容腔的形状匹配,从而使得活塞相对于所述喷嘴往复移动时,从而通过所述喷嘴通道吸气和排气。

如上所述的喷嘴组件,所述壳体具有入口,所述入口与所述流体容腔连通。

如上所述的喷嘴组件,所述套筒与所述喷嘴密封连接,所述套筒与所述壳体密封连接。

如上所述的喷嘴组件,所述喷嘴与所述壳体密封连接。

本申请提供的喷嘴能够分配较小体积的粘稠流体,并且不易发生堵塞。

附图说明

图1是本申请中喷嘴组件一个实施例的侧面视图;

图2是图1中的喷嘴组件的分解示意图;

图3a是图1中的喷嘴组件的壳体的立体视图;

图3b是图3a中的喷嘴组件的壳体的轴向剖面示意图;

图4a是图1中喷嘴组件中的套筒组件的立体图;

图4b是图4a中套筒组件的分解示意图;

图4c是图4a中套筒组件的轴向剖面示意图;

图5a是图1中的喷嘴组件的喷嘴的一个方向的立体视图;

图5b是图5a中的喷嘴组件的喷嘴的另一个方向的立体视图;

图5c是图5a中喷嘴的轴向剖面示意图;

图6是图1中的喷嘴组件沿a-a线剖开的剖面示意图。

具体实施方式

下面将参考构成本说明书一部分的附图对本发明的各种具体实施方式进行描述。应该理解的是,虽然在本申请中使用表示方向的术语,诸如“前”、“后”、“上”、“下”、“左”、“右”、“顶”、“底”等描述本申请的各种示例结构部分和元件,但是在此使用这些术语只是为了方便说明的目的,基于附图中显示的示例方位而确定的。由于本申请所公开的实施例可以按照不同的方向设置,所以这些表示方向的术语只是作为说明而不应视作为限制。

图1是本申请中喷嘴组件一个实施例的侧面视图,如图1所示,喷嘴组件100包括主体101、活塞103以及流体输送管105,主体101的下方设有主体流体出口111。流体从流体输送管105进入主体101中,通过活塞相对于主体101的上下移动,能够将主体101中的流体从主体流体出口111压出。本申请中的喷嘴组件100适用于分配粘稠的流体,例如,黏度范围在1000-150,000cps的流体。所述粘稠的流体在电子加工领域可以是焊膏、导电材料等。

图2是图1中的喷嘴组件100的分解示意图。如图2所示,主体101包括壳体203、套筒组件205和喷嘴201。套筒组件205和喷嘴201位于壳体203中,活塞103能够插入套筒组件205和喷嘴201中。流体输送管105的一端能伸入壳体203中。活塞103具有圆柱状的杆部134以及圆滑的头部135,头部135能够插入喷嘴201中。喷嘴201和壳体203之间还设有喷嘴密封装置250。

图3a是图1中的喷嘴组件100的壳体203的一个方向的立体视图,图3b是图3a中的壳体203沿着图3a中穿过入口303的方向剖切的轴向剖面示意图,用于示出壳体的结构。如图3a和图3b所示,壳体203大致呈圆筒状。壳体203具有外壁341以及内壁342,内壁342限定出壳体203的容腔305。容腔305具有上开口316以及下开口318。容腔305大体为圆柱形。

壳体203包括壳体上部331以及壳体下部332,壳体上部331的侧壁上设有与容腔305连通的入口303。流体输送管105的一端能够插入入口303中,使得流体输送管105能够与容腔305连通。其中壳体上部331的侧壁的厚度可以设置得较厚,以便于安装流体输送管105。在本申请的一个实施例中,壳体上部331的外径大于壳体下部332的外径,形成较厚的壳体上部331的侧壁。

容腔305包括上段381、中段382和下段383。上段381与上开口316连通,下段383与下开口318连通。中段382的直径小于上段381的直径,从而在中段382与上段381之间形成喷嘴限位台阶355。下段383的直径小于中段382的直径,从而在下段383与中段382之间形成密封件限位台阶365。喷嘴限位台阶355用于限制装入壳体203的容腔305中的喷嘴201从壳体203的下开口318脱出。密封件限位台阶365用于限制喷嘴201和壳体203之间的喷嘴密封装置250从壳体203的下开口318脱出。

图4a和图4b分别是套筒组件205的立体图和分解图,图4c是图4a中的套筒组件的轴向剖面示意图,用于展示套筒组件205的结构。如图4a和图4b所示,套筒组件205包括套筒401以及若干密封件。套筒401大至呈圆柱状,套筒401内具有沿套筒401的轴向方向延伸并贯穿套筒401的容腔406,容腔406形成活塞通道407,用于容纳活塞103。在本申请的一个实施例中,套筒401具有套筒上部411以及套筒下部412。套筒上部411中具有上部容腔451,套筒下部412具有下部容腔452,上部容腔451与下部容腔452连通并共同限定活塞通道407。套筒上部411包括头部421,以及尾部422,其中尾部422自头部421的下方向下延伸形成。头部421的外径与壳体容腔305的上段381的直径大体相同,尾部422的外径小于头部421的外径。套筒下部412的外径也小于套筒上部411的头部421的外径。

头部411上设有在头部411的圆周方向延伸的环形槽429,环形槽429自头部411的外侧的表面向内凹陷而形成。环形槽429用于安装头部密封件441,头部密封件441用于套筒上部411与壳体203之间的密封。在套筒下部412的上端和下端,下部容腔452的直径扩大,形成密封件容纳部461和462,分别用于容纳套筒下部第一密封件442和套筒下部第二密封件443。套筒下部第一密封件442用于套筒上部411和套筒下部412之间的密封,套筒下部第二密封件443用于套筒下部412与喷嘴201之间的密封。在本实施例中,头部密封件441、套筒下部第一密封件442和套筒下部第二密封件443均为由弹性材料制成的环形密封圈,例如由橡胶制成的密封圈。

在本申请中的另一个实施例中,套筒401为一体式的构造,则套筒上部和套筒下部之间不需要设置密封件。

图5a和图5b分别是喷嘴201两个方向的立体图,图5c是喷嘴201的沿流体通道入口518的方向剖切的轴向剖面示意图,用于示出喷嘴的具体结构。如图5a,5b和5c所示,喷嘴201大致呈圆柱状,具有喷嘴上段501喷嘴中段503、喷嘴下段502。其中喷嘴下段502的外径小于喷嘴中段503的外径,从而使得喷嘴中段503相对于喷嘴下段502形成凸缘538。当喷嘴下段502能够自上而下插入壳体开口318中时,凸缘538被壳体203的喷嘴限位台阶355阻挡,从而喷嘴201不能从壳体203的开口318中脱出。并且喷嘴中段503的直径大于喷嘴上段501的直径,使得当喷嘴201装入壳体203之中时,喷嘴上段501和壳体203的容腔305的上段381的内侧壁之间具有一定的间距。

喷嘴201具有活塞容腔530,喷嘴通道512以及流体通道511,其中喷嘴通道512与活塞容腔530连通,流体通道511与喷嘴通道512连通。活塞容腔530自喷嘴201的上表面581向内部凹陷形成,用于接收活塞103。活塞容腔530的形状与活塞103的形状匹配,使活塞103能够紧贴活塞容腔530的内壁。活塞容腔530的上部531的侧壁为圆柱形,下部532的侧壁为自上部531的侧壁向下延伸的圆滑过渡的球状曲面,下部532上设有开口537。喷嘴通道512位于活塞容腔530的下方,并具有气流入口515、出口516以及流体入口517。其中,流体入口517设置在气流入口515的下方,并且出口516设置在流体入口517的下方。气流入口515与活塞容腔530的开口537连通或对齐,使得活塞容腔530与喷嘴通道512连通。流体通道511具有流体通道入口518以及流体通道出口514,流体通道入口518与流体的来源连通,用于将流体引入流体通道511,流体通道出口514与喷嘴通道512的流体入口517连通或对齐,使流体能够从流体通道511进入喷嘴通道512。喷嘴通道512具有喷嘴通道上段541以及喷嘴通道下段542,喷嘴通道下段542比喷嘴通道上段541更细。气流入口515设置在喷嘴通道上段541的顶端,出口516设置在喷嘴通道下段542的底端。流体入口517与喷嘴通道上段541连通,并且流体入口517设置在喷嘴通道上段541的侧壁的靠近喷嘴通道上段541与喷嘴通道下段542的连接处的位置处。气体自较粗的喷嘴通道上段541流入较细的喷嘴通道下段542后能够被加速,利于将进入喷嘴通道512的流体压出。

喷嘴201还包括自喷嘴201的底部表面582向内凹陷形成的槽560,自槽560的底部567朝向喷嘴201的底部表面582延伸形成凸出部561,喷嘴通道512穿过凸出部561,从而喷嘴通道512的出口516位于凸出部561的下端。出口516位于槽560内部,也就是说,出口516的位置在如图5c所示的水平方向上高于喷嘴201的底部表面582的高度。

在本申请的一个实施例中,流体通道511为一个,在其它实施例中,流体通道511也可以为多个。

需要说明的是,尽管在本申请的上述实施例中,套筒401与喷嘴201设置为分开的部件,根据本申请,在其他的实施例中,套筒401与喷嘴201也可以设置为一体地部件。

图6是图1中的喷嘴组件100沿a-a线剖开的剖面示意图,示出了喷嘴组件的各个部件的配合关系。如图6所示,套筒401和喷嘴201安装在壳体203的容腔305中,套筒401承载在喷嘴201上,使得活塞通道407与活塞容腔530连通。活塞103能够插入活塞通道407以及活塞容腔530中,并能在活塞通道407以及活塞容腔530中往复移动。活塞头部135与活塞容腔530的形状匹配,从而两者之间的表面能够贴合,使得活塞103相对于喷嘴201往复移动时,能够通过喷嘴通道512吸气和排气。

由于套筒上部411的头部421的外径与壳体容腔305的上段381的直径大体相同,套筒上部411的头部421的外侧与壳体203的内壁接触。喷嘴下段502穿过壳体203的开口318,喷嘴中段503承载在壳体203中的喷嘴限位台阶355上。从而喷嘴201的外侧、套筒401的外侧和壳体203的内侧之间形成流体容腔640,流体容腔640用于容纳从壳体203的外部引入的流体。壳体203的入口303处装有流体输送管105,流体输送管105一端与流体的来源连通,另一通与流体容腔640连通,用于将流体引入流体容腔640。流体通道511的流体入口517与流体容腔640连通,从而流体能够自流体容腔640进入流体通道511。

套筒401与壳体203的连接处设有头部密封件441,头部密封件441能够受到壳体203的内壁342与套筒401的外侧之间的压力而发生形变,从而在壳体203与套筒401之间形成密封,防止流体容腔640中的流体从连接处泄露到壳体203的外部。喷嘴201与壳体203的连接处设有喷嘴密封件250,当喷嘴201和喷嘴密封件250装入壳体203中后,喷嘴密封件250被限制在喷嘴中段503的凸缘538与密封件限位台阶365之间,能够受到喷嘴中段503的下部与密封件限位台阶365之间的挤压而发生形变,从而使壳体203与喷嘴201之间形成密封,防止流体容腔640中的流体从连接处泄露到壳体203的外部。套筒下部412与喷嘴201的连接处设有第二密封件443,第二密封件443能够受到套筒下部402与喷嘴201上表面581之间的压力发生形变而形成密封,用于防止流体进入活塞通道407以及活塞容腔530。从而流体仅能从入口303进入流体容腔640,并从喷嘴201的流体通道511流出,而不能泄露到壳体203的外部,也不能进入活塞通道407以及活塞容腔530。

在本申请的一个实施例中,密封件250套设在喷嘴201的喷嘴下段502上,并靠近喷嘴中段503,从而密封件250的凸缘538抵靠密封件限位台阶365从而形成密封。在又一个实施例中,密封件250设置在喷嘴中段503的凸缘538的下方,并与喷嘴限位台阶355接触从而形成密封。在又一个实施例中,密封件250可以设置在喷嘴中段503的外侧,从而密封件250径向方向上的外侧抵靠壳体的内壁342从而形成密封。

使用本申请的喷嘴组件分配流体分为以下几个步骤:

(1)流体进入喷嘴通道

在分配流体之前,活塞103相于对喷嘴201处于较高位置,即活塞103的初始位置。此时活塞103的头部还没有占满活塞容腔530,活塞容腔530中具有空气。通常由于流体的粘性较大,流体通常不能自发地从流体容腔640进入喷嘴通道512流出,与流体输送管105连接的流体来源处可施加适当的压力,将适量流体压入喷嘴通道512。所施加的压力根据流体的性质不同而不相同。并且,在某些特殊情况下,流体由于自身的重力而能够进入喷嘴通道512,此时流体来源处可以不需要施加压力。

(2)分配流体

当将喷嘴组件移动到达待加工位置时,将活塞103向下移动,挤压活塞容腔530中的空气,被挤压的空气带动流体从喷嘴通道512中流出,落在待加工位置,完成一次流体分配。

(3)活塞复位

流体分配完成后,紧接着将活塞103向上移动,回复到初始位置,准备下一次流体分配。由于流体粘度较大,在喷嘴通道512中的流体刚刚被活塞103移动所挤压的气体压出的情况下,流体在这个较短时间不能自发地流入喷嘴通道512。此时活塞103立即向上移动,能够通过喷嘴通道512将外界的空气吸入喷嘴容腔530,完成活塞103吸气过程。活塞103恢复初始位置,准备下一次流体分配。

在整个流体分配过程中,由于活塞103与流体不发生接触,流体不易粘结在活塞103上,从而不会影响活塞103往复运动的灵活性。活塞103与流体不发生接触也减少了喷嘴201被粘稠流体堵塞的可能性。并且采用本申请中喷嘴组件的配置,可以通过设计喷嘴通道512与流体通道511的粗细以及长度来控制分配的流体的量,从而本申请的喷嘴组件适用于较小量的流体分配,可应用于芯片级别的电子加工领域。

尽管本文中仅对本发明的一些特征进行了图示和描述,但是对本领域技术人员来说可以进行多种改进和变化。因此应该理解,所附的权利要求旨在覆盖所有落入本发明实质精神范围内的上述改进和变化。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1