锶及铯特异性离子交换介质的制作方法

文档序号:17989901发布日期:2019-06-22 00:42阅读:176来源:国知局

本发明涉及一种能够从水(包括海水)中去除放射性核素的新型离子交换介质。

发明背景

有机和无机离子交换剂(包括结晶分子筛沸石)用于从水溶液中去除某些金属的用途在本领域是众所周知古老的,并且专利和技术文献含有此类技术的多个实例。虽然分子筛对于去除某些阳离子通常是有效的,但是,当在水溶液中存在竞争阳离子时,分子筛一般将发挥作用到期望被有效去除的金属占用所述沸石中的一部分离子位点的程度。此后,必须丢弃或再生沸石。

以上类型的操作的一个非常实用的用途是在家庭用水软化工业中,其中使有机或无机类型的离子交换剂与水接触,直到本来存在于大部分矿物质水中的钙离子和镁离子替代最初与离子交换剂缔合的离子,通常指钠。此时,必须再生离子交换剂,并且这通常通过反洗或反冲,或以其它方式使离子交换剂与不同于从水中去除的阳离子的阳离子溶液(即,通常为氯化钠形式的钠)接触而完成。钠交换用过的离子交换剂中的钙/镁并准备重新开始循环。

在评价适合离子交换剂的性质时,非常明显的是,其作用以去除不需要的一种金属或多种金属的环境是极为重要的,并且其对竞争离子的敏感性在获得实用交换剂中是至关重要的,而不仅仅是科学好奇心。

因此,例如,在受污染的水溶液中存在重金属的工业生产过程中,因为水含有其它离子(特别是钙和镁)所以此类重金属一般不会单独存在。因此对于实际用于接触含有重金属的工业废水的离子交换剂而言,相对于竞争其离子交换位点的镁或钙,离子交换剂对重金属有足够选择性是必要的。

u.s.5,053,139公开了某些非晶形硅酸钛及硅酸锡凝胶在包括竞争离子例如钙和镁存在的测试条件下,对重金属种类例如铅、镉、锌、铬及汞展示出比现有技术的吸收剂或离子交换剂高一个数量级的显著吸收速率。非凡的铅选择性、容量和吸收速率的组合使此类物质利用最短的接触时间从水流中脱去铅,允许直接最终用于过滤器中进行水的净化,柜台下或水龙头下,或全户装置。虽然本专利教导了一种利用非晶形硅酸钛或硅酸锡从含有竞争离子例如钙和/或镁的水溶液中去除重金属的方法,但是没有提供关于从含有竞争离子的水流中选择性去除i族或ii族离子,例如铯或锶的信息。

在整个核工业中,存在许多含有放射性离子例如锶和铯的水流,在处理液体前必须去除这些放射性离子。离子交换为一种去除此类离子的理想方法。然而,这些水流通常含有非放射性竞争阳离子,这使大多数离子交换物质因为有限的选择性而无效。存在含有多种含量的不同竞争离子的多种不同水流。例如,已知日本福岛有大量含有放射性锶和铯的水,因2011年海啸并发大量海水污染。去除这种竞争离子环境中的放射性核素受到了挑战。

在高含量的核废液中发现了高竞争离子的另一个实例。由hobbs,d.t.等在“strontiumandactinideseparationsfromhighlevelnuclearwastesolutionsusingmonosodiumtitanate1.simulanttesting”,separationscienceandtechnology,40:3093-3111,2005中评论了这些溶液、所提出的物质及试验方法。hobbs公开了钛酸一钠(mst),nati2o5·xh2o,一种非晶形白色固体,对酸性及碱性废液(包含含有锶及多种锕系元素的废液)中的多种金属离子显示出高选择性。对于本领域技术人员,熟知将非常昂贵及专用的钛酸一钠(mst)和结晶硅钛酸盐(cst)用于这些水流的净化。



技术实现要素:

本发明涉及尤其在高含量的竞争离子存在下,对铯及锶具有意想不到的选择性的非晶形及结晶钛硅酸盐物质。本发明的钛硅酸盐在此类竞争阳离子例如钠、钙、镁及钾(例如存在于海水中)存在下,表现出非常高的意想不到的选择性。

本发明的钛硅酸盐提供了一种预计更合算的替代物,其性能与上述专用mst介质相当。并且,本发明的非晶形钛硅酸盐可以聚结形式制得而不需要粘合剂,从而提供明显优于以粉末形式制得且必须粘合的mst及cst物质的优势,例如根据hobbs,d.t.journalofthesouthcarolinaacademyofscience,[2011],9(1)"propertiesandusesofsodiumtitanatesandperoxotitanates(钛酸钠和过氧钛酸盐的性质及用途)"中教导。所提出本发明的另一个优点在于可使此类无机物质玻璃化,使其适于放射性核废料的长期埋藏。有机离子交换树脂,例如,不提供这些益处。同样,mst的高钛含量使那些物质相对于本发明物质更难于玻璃化。具体地,本发明涉及如下技术方案:

技术方案1.一种从含有较轻i族和ii族阳离子的水流中去除二价和/或三价放射性核素的方法,其包括:使所述水流与硅酸钛接触。

2.根据技术方案1所述的方法,其中所述硅酸钛为非晶形。

3.根据技术方案2所述的方法,其中所述硅酸钛的si与ti比率为约2:1至0.5:1。

4.根据技术方案3所述的方法,其中所述si与ti比率为约1.5:1至0.9:1。

5.根据技术方案1所述的方法,其中所述硅酸钛为结晶ets-4。

6.根据技术方案2所述的方法,其中所述非晶形硅酸盐是以不含粘合剂的颗粒存在。

7.根据技术方案5所述的方法,其中所述ets-4呈含有粘合剂的颗粒形式。

8.根据技术方案1所述的方法,其中所述水流包含海水。

9.根据技术方案1所述的方法,其中所述水流包含地表水或地下水。

10.根据技术方案9所述的方法,其中所述水流经纯化以生产饮用水,或用于整治已经被所述放射性核素污染的水流。

11.根据技术方案1所述的方法,其中所述放射性核素包含铯和/或锶。

12.根据技术方案1所述的方法,其中所述水流来自于核燃料池水,或来自于海水注入的用于发电的核电站。

13.根据技术方案1所述的方法,其中所述阳离子包含钠、钾、钙、镁、或其混合物。

14.根据技术方案1所述的方法,其中所述水流含有按当量计,相对于所述放射性核素至少10倍量的i族及ii族阳离子。

15.根据技术方案1所述的方法,其中所述水流含有按当量计,相对于所述放射性核素至少100倍量的i族及ii族阳离子。

16.根据技术方案1所述的方法,其中所述水流含有按当量计,相对于所述放射性核素至少1,000倍量的i族及ii族阳离子。

17.一种从含有轻i族及ii族阳离子的水流中去除二价和/或三价放射性核素的方法,其包括:使所述水流与硅酸锡接触。

18.根据技术方案14所述的方法,其中所述水流包含海水。

19.根据技术方案14所述的方法,其中所述水流包含地表水或地下水。

20.根据技术方案14所述的方法,其中所述放射性核素包含铯和/或锶。

具体实施方式

目前已发现,某些非晶形及结晶硅酸钛非常适于在海水中常见的竞争离子的存在下从水中去除放射性核素。更具体而言,二价及三价放射性核素可从污染的水流,例如含有非-放射性i族及ii族阳离子的海水、地表水及地下水中去除。在竞争离子存在下,通过硅酸钛去除铯及锶可轻易实现。

虽然在本领域中一直已知硅酸盐凝胶对多种应用,包括离子交换剂有用,并且对某些硅酸盐凝胶的认可很不寻常,其如u.s.5,053,139中所公开那样,也可在极高速率下有效地去除铅,但是使用硅酸钛来去除海水中的放射性核素例如铯及锶还没有得到认可。

用于本发明的新型方法的非晶形硅酸钛为优选地含有2:1至0.5:1的硅与钛比率,且最优选1.5:1至1.2:1的硅与钛比率的硅酸钛。

仅通过在剧烈搅拌下,使可溶性钛盐溶液,例如氯化物、溴化物、氯氧化物等与硅酸钠溶液及足量碱接触制得用于本发明的新型方法的硅酸钛。

溶液ph应落于4与9之间,且优选地7与8之间,并且如果不是这种情况,则用稀hcl或任何其它酸或稀氢氧化钠调节ph。然后,冲洗掉样品中的盐并干燥。虽然干燥温度及时间并不重要,但通常在约70℃下干燥24至48小时。

最初,使非晶形硅酸钛形成为沉淀凝胶。凝胶可如制得般使用,通常呈其钠形式,或呈其它碱或碱土金属形式,以及呈其氢形式。洗涤凝胶,然后干燥,干燥的凝胶在水中稳定。如果通过喷雾干燥来干燥凝胶,则物质形成粉末。如果盘式干燥凝胶,则物质形成岩石样状态,其类似于具有收缩裂缝的干泥浆。研磨岩石样物质以制得颗粒或通过静水压力造成应力断裂。可通过不具有结晶特征的粉末x-射线衍射图证实这些硅酸钛的非晶形性质。

本发明也包括稳定的结晶硅酸钛分子筛沸石,其具有约单位的孔径及1.0至10范围内的二氧化钛/二氧化硅摩尔比。这些物质被称为ets-4并在u.s.4,938,939中有描述。ets-4硅酸钛具有不同于其它分子筛沸石的确定x-射线衍射图并可通过如下的氧化物摩尔比鉴定:

1.0±0.25m2/no:tio2:ysio2:zh2o

其中m为具有n价的至少一种阳离子,y为1.0至10.0,以及z为0至100。在一个优选实施方案中,m为碱金属阳离子,尤其是钠和钾的混合物,并且y为至少2.5并且范围高达约5。

est分子筛沸石的成员具有有序的晶体结构以及具有以下显著谱线的x-射线粉末绕射图:

在上表中,

vs=50-100

s=30-70

m=15-50

w=5-30

可由含有钛源(例如四氯化钛)、二氧化硅来源、碱度来源(例如碱金属氢氧化物)、水及(任选地)碱金属氟化物的反应混合物制得ets-4分子筛沸石,其具有根据属于以下范围的摩尔比的组成。

其中m表示来源于碱金属氢氧化物及氟化钾和/或用于制备根据本发明的硅酸钛的碱金属盐的n价阳离子。将反应混合物加热到约100℃至300℃的温度,持续约8小时至40天,或更长时间。进行水热反应直到晶体形成,此后从反应混合物中分离出所得结晶产物,冷却到室温,过滤并水洗。可搅拌反应混合物,但并非必要。已发现,当使用凝胶时,搅拌并不必要但可采用。当使用固体的钛来源时,搅拌是有利的。优选的温度范围为100℃至175℃,持续时间为12小时至15天。在高压釜或静态炸弹反应器中以连续或分批方式在自生压力下进行结晶。在水洗步骤后,使结晶ets-4在100至400℉的温度下干燥长达30小时。

将ets-4物质合成为粉末,一般来说,微米尺寸范围内的不同颗粒的浆液。例如u.s.4,938,939中所公开那样,为将这种物质用于填充床,需利用粘合剂聚结ets-4。

出于没有完全理解的原因,已经发现,可通过沉淀含水金属氧化物制得具有非凡的选择性、容量及交换速率的离子交换剂,其中硅与钛的摩尔比在1:4至1.9:1范围内。优选的摩尔比已在前面提出。

一般来讲,在本发明的新型方法中可操作的硅酸钛具有约0.03至约0.25立方厘米/克的累积解吸孔体积。通过如u.s.5,053,139中所述的方法测定累积解吸孔体积。

虽然优选硅酸钛,但认为硅酸锡在从含有竞争离子的水流中去除放射性核素也有用。可如上所述通过将可溶性锡盐溶液,例如氯化物、溴化物、氯氧化物等与硅酸钠溶液和足量碱接触,并剧烈搅拌制得硅酸锡凝胶。

本发明的硅酸钛及硅酸锡能够从含有大量竞争阳离子的水流中去除放射性核素阳离子。因此,本发明可应用于从自然地表水和地下水中去除此类阳离子,例如用于净化饮用水,以及用于整治已经被污染了的自然水源。具体而言,本发明从自然水源中去除放射性核素阳离子污染,这些自然水源已经因工业废料流出,或来自工业加工的此类物质的意外泄露被污染。一种特别现代的用途是从工业过程流中去除这些放射性核素阳离子,例如,来自用于发电的核反应器的燃料池水,以及来自海水溢出的核发电站,例如几年前日本发生的最近一次海啸,或来自其他工业过程流。

一般来讲,本发明的硅酸盐能够从按当量计包含至少10倍量的除放射性核素阳离子外的阳离子的含水体系中去除放射性核素阳离子,包括但不限于,铯及锶。此类其它阳离子将包括ⅰ族和ⅱ族金属阳离子,例如钠、钾、钙及镁。本发明也用于从含水体系中去除放射性核素阳离子,其中按当量计相对于放射性核素阳离子水流含有至少100倍量的轻i族和ii族金属阳离子,以及,甚至,当此类水流含有至少1,000倍及更多的竞争性i族和ii族阳离子时。

实施例1

通过将569.11gticl4加入足量去离子水中以达到2升来制得2升1.5m氯化钛溶液(溶液a)。通过将638.2gna2sio3.5h2o溶于足量3mnaoh中以达到2升来制得2升1.5m硅酸钠溶液(溶液b)。在特别剧烈搅拌下,以16cc/分钟的速率将溶液b添加到溶液a中。添加完成后,使混合物继续再混合15分钟。溶液ph应落于7.5与7.9之间;如果不是这种情况,用稀hcl或稀naoh调节ph。然后,使样品老化一小时。老化后,倒掉凝胶上的任何水。然后过滤样品,每升凝胶用1升去离子水洗涤,在4-6升去离子水中再浆化,过滤,最后每升凝胶用2升水再次洗涤。然后在100℃下干燥样品24-48小时。

由这种方法制得的凝胶的硅与钛比率为约1:1以及表面积为约295m2/g。一旦干燥,就将大凝胶微粒碾碎成主要在20-60目范围内的小微粒。然后使颗粒进行离子交换试验。发现通过氮解吸测量的粒径分布具有的平均孔径。发现这种样品的累积解吸孔体积为0.148cc/g。

实施例2

如提供了用于评价本发明的硅酸钛的模拟高含量核废液的组成的概要的表3所示,制备使用在去离子蒸馏水中的试剂级化学品的溶液。将5.2ppm目标量的非放射性sr加入表3所示的溶液中。将2.5mg实施例1中形成的钛硅酸盐加入25ml模拟溶液中并在搅拌下,使其在周围室温下平衡40小时。平衡后,使溶液通过0.45微米孔径尼龙膜过滤器过滤以去除任何残余固体。在该实施例中描述的一系列六个单独实验中,锶含量有效地降到以下浓度:1.7ppm、1.5ppm、1.5ppm、1.4ppm、1.4ppm、及1.5ppm。

实施例3

通过稀释表4中的成分制得5加仑代表30%普通海水浓度的人工溶液:

表4

斜发沸石和沸石4a是对重阳离子具有已知选择性的常见沸石并因此与实施例1中钛硅酸盐进行比较。向三个250mlehrlenmeyer烧瓶的每个添加20克30%海水溶液。向每份溶液添加各2克的离子交换样品。使用50克溶液及各0.5g介质制得第二组的三个烧瓶,并使用200克溶液及各0.2克介质制得第三组。因此根据表5中所示的比率对九个样品加量。每天手动搅拌烧瓶几次并使其平衡4210分钟。通过装配有微米尺寸的过滤器的注射器吸取多等份的每种最终溶液并分析起始溶液中存在的阳离子。结果包含在表5中并清晰地显示钛硅酸盐去除锶的极佳性能。

表5

实施例4

在商业实践中,离子交换材料由于改良的性能及实用性主要用于动力学流动系统中。这些系统需要水稳定性聚结物以确保动力压降可接受。在此类系统中,所处理的外排流随时间改变组成,表示通过床的各种传质锋面。最小选择性离子先从床中出现,然后是具有递增变高的选择性的离子。用去离子水按11:1[水:原液]的比率进一步稀释来自实施例3的原液海水溶液。将10克实施例1中钛硅酸盐放入内径为11mm的玻璃柱中并在床两侧塞满惰性玻璃棉。使稀释的原液以1.74ml/min的平均速率流过所述柱。在不同时间监测出口流并分析原液中的离子。表6中结果清晰地显示对锶的选择性比竞争离子钠、镁、钙及钾高出几个数量级。

表6

实施例5

为进一步显示本发明相对于当前技术的优点,使用basf提供的名称为4abf的4a类标准颗粒状沸石,重复实施例4的实验。表7中显示了动态穿透试验的结果。尽管这种沸石具有比钛硅酸盐高出两倍以上的离子交换容量,但流出液中仍几乎立即出现锶(也称为穿透)并且比实施例4更快。

表7

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1