本发明涉及吸附材料制备领域,具体涉及一种适用于液化天然气工艺的可再生汞吸附剂的制备方法。
背景技术:
天然气是一种重要的清洁的化石燃料,其燃烧产生相同热量释放的的二氧化碳、二氧化硫、氮氧化物和颗粒物等污染物的量均远低于煤和石油。天然气的需求量预计在2035年前将以每年1.4-1.6%的速率增长,具有巨大的市场需求。
液化天然气(lng)是天然气中最清洁的形式,其甲烷含量通常高达90%以上,其组成通常以碳原子数小于4的烃类为主,并含有非烃气体如二氧化碳、硫化氢、水汽和汞等。天然气液化主要包括三个过程:前处理、液化过程及储运。前处理过程需要将天然气中的杂质如酸性气体、水及汞去除。其目的是防止杂质气体对液化设备的内部腐蚀及在冷却过程中固体物质的形成而造成的对设备的损害。天燃气液化项目通常投资极其巨大,在液化天然气产业链中,液化成本在总成本中的比例可高达约41%,因此,对液化设备的保护尤为重要。而天然气中的杂质,尤其是汞会对液化装置造成巨大的损害。汞不仅会腐蚀铝制换热设备、污染管路及工艺设备、使下游贵金属催化剂中毒,还会在设备维护期间使工人暴露在高浓度的汞环境中。天然气中的汞主要以零价汞的形式存在,并含有少量的有机态汞和无机汞化物。天然气中的汞浓度通常在1~200μg/m3之间,由于地理位置及地质原因,天然气中的汞可高达5000μg/m3。高浓度的汞对汞的高效脱除技术提出了巨大的挑战。因此,对天然气中汞的高效脱除将对推动我国液化天然气产业的发展具有重要的意义。
液化天然气中汞的主要脱除方法是吸附法。脱汞吸附剂主要为可再生吸附剂如载硫活性炭、载碘活性炭及近年来兴起的离子液体吸附剂等。由于非可再生吸附剂不易于再生,存在吸附后的吸附剂难以处理,活性组分易于流失,易于受气体水汽素影响等问题,而可再生吸附剂可有效克服上述问题,显示出较大的优势。而可再生吸附剂的核心技术掌握在国外公司手中,主要有环球油品(uop)的hgsivtm吸附剂,金属英国庄信万丰催化剂公司(johnsonmatthey)的puraspec吸附剂和阿克森斯(axens)公司的pocatalyse系列吸附剂。液化天然气工艺中,由于存在大量的水蒸气、高分子量的有机物的存在,吸附剂在该条件下极易失去吸附能力。
技术实现要素:
为解决上述问题,本发明提供了一种适用于液化天然气工艺的可再生汞吸附剂的制备方法。
为实现上述目的,本发明采取的技术方案为:
一种适用于液化天然气工艺的可再生汞吸附剂的制备方法,包括如下步骤:
s1、将氧化石墨烯分散于溶剂中,超声或搅拌30-240min后,加入两种以上过渡金属的硝酸、硫酸和盐酸化合物,得混合溶液;
s2、将所得的混合溶液静置于100-150℃的油浴中搅拌15-120min,缓慢加入硫源后,迅速将混合液转移至水热釜中,在220-300℃条件下反应3至36h形成a-b-s/石墨烯复合物,其中,a,b为金属和过渡金属,s为硫元素;
s3、将所得的a-b-s/石墨烯复合物用乙醇和去离子水清洗干净并在80-150℃烘干后,超声分散于乙醇溶液中,放入沸石陶粒静置5h-12h形成a-b-s/石墨烯/陶粒复合材料;
s4、将所得的a-b-s/石墨烯/陶粒复合材料与粘合剂及水混合后,依次经过挤压成型干燥后得到成型材料,其中,所述水、复合材料与所述粘结剂的质量比的取值范围为5-20%:40-60%:20-55%,最后将该材料在10-1000ppmh2s80-120℃活化2-6h,即得可再生汞吸附剂。
进一步地,所述氧化石墨烯通过氧化石墨还原法或化学气相沉积法制备所得,冷冻干燥后备用,过渡金属包括sn、cu、sb、ni、co、bi、cd中的两种或多种的组合。
进一步地,所述沸石陶粒通过以下方法制备:
将陶粒在碱水热处理的条件下沸石结晶形成沸石陶粒,具体地,将陶粒磨成40-60目,将其置于ph=10-12的溶液中,转入水热釜中,在120-250℃条件下反应6-18h。
进一步地,所述溶剂为二甲基亚砜、乙二胺或乙二醇等中的一种。
进一步地,所述硫源为硫化铵、硫脲半胱氨酸、二甲基亚砜和噻唑中一种或两种的组合。
进一步地,所述可再生汞吸附剂的可再生方法如下:将使用后的吸附剂浸泡于浓度为5-40%的重金属捕集的水溶液中,在30-80度条件下浸泡0.5-6h,过滤,在50度条件下晾干。
进一步地,所述重金属捕集剂为有机硫捕集剂:二硫代氨基甲酸盐(dtc)、黄原酸、三巯三嗪三钠(tmt)和三硫代碳酸钠(stc)其中的一种或几种。
本发明具有以下有益效果:
1.本发明所得的吸附剂具有显著的抗水性能,汞吸附能力对有机物的干扰影响小。
2.本发明的吸附剂在较低40-150℃温度下,吸附性能可达90%以上
3.本发明所述吸附剂在h2s存在条件下汞吸附性能。
附图说明
图1为本发明实施例一种适用于液化天然气工艺的可再生汞吸附剂的制备方法的流程图。
图2为t=80℃,hg0=200μg/m3,载气流量2l/min,吸附剂粉末用量40mg,在不同水蒸气浓度下吸附6h后的汞吸附性能示意图。
图3为t=80℃,hg0=200μg/m3,载气流量2l/min,吸附剂粉末用量40mg,在不同苯浓度下吸附6h后的汞吸附性能示意图。
图4为t=80℃,hg0=1000μg/m3,载气流量2l/min,吸附剂粉末用量40mg,在h2s浓度条件下吸附的汞吸附性能示意图。
图5为t=120℃,hg0=1000μg/m3,空速为2.0×106s-1,在不同温度下吸附1h后的汞吸附性能示意图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
本发明实施例一种适用于液化天然气工艺的可再生汞吸附剂的制备方法,包括如下步骤:
s1、将氧化石墨烯分散于二甲基亚砜或乙二胺或乙二醇中,超声或搅拌30-240min后,加入两种以上过渡金属的硝酸、硫酸和盐酸化合物,得混合溶液;所述过渡金属包括sn、cu、sb、ni、co、bi、cd中的两种或多种的组合;
s2、将所得的混合溶液静置于100-150℃的油浴中搅拌15min,缓慢加入硫源后,如硫化铵或硫脲,迅速将混合液转移至水热釜中,在220-300℃条件下反应3-36h形成a-b-s/石墨烯复合物,其中,a,b为金属和过渡金属,s为硫元素;
s3、将所得的a-b-s/石墨烯复合物用乙醇和去离子水清洗干净并在80-150℃烘干后,超声分散于乙醇溶液中,放入沸石陶粒静置5h-12h形成a-b-s/石墨烯/陶粒复合材料;
s4、将所得的a-b-s/石墨烯/陶粒复合材料与粘合剂及水混合后,依次经过挤压成型干燥后得到成型材料,其中,所述水、复合材料与所述粘结剂的质量比的取值范围为5-20%:40-60%:20-55%,最后将该材料在10-1000ppmh2s80-120℃活化2-6h,即得可再生汞吸附剂。
所述沸石陶粒通过以下方法制备:
将陶粒在碱水热处理的条件下沸石结晶形成沸石陶粒,具体地,将陶粒磨成40-60目,将其置于ph=10-12的溶液中,转入水热釜中,在120-250℃条件下反应6-18h。
所述可再生汞吸附剂的可再生方法如下:将使用后的吸附剂浸泡于浓度为5-40%的重金属捕集的水溶液中,在30-80℃条件下浸泡0.5-6h,过滤,在50度条件下晾干。所述重金属捕集剂为有机硫捕集剂:二硫代氨基甲酸盐(dtc)、黄原酸、三巯三嗪三钠(tmt)和三硫代碳酸钠(stc)等其中的一种或几种。
本具体实施以沸石陶粒作为基底材料,将石墨烯引入吸附剂中,利用碳基吸附材料具有的天然的疏水性能,使得所得的吸附剂具有显著的抗水性能。
t=80℃,hg0=200μg/m3,载气流量2l/min,吸附剂粉末用量40mg,在不同水蒸气浓度下吸附6h后的汞吸附性能如图2所示;t=80℃,hg0=200μg/m3,载气流量2l/min,吸附剂粉末用量40mg,在不同苯浓度下吸附6h后的汞吸附性能如图3所示;t=80℃,hg0=1000μg/m3,载气流量2l/min,吸附剂粉末用量40mg,在h2s浓度条件下吸附的汞吸附性能如图4所示;成型吸附剂的吸附性能h2o=10%,hg0=1000μg/m3,空速为2.0×106s-1,在不同温度下吸附1h后的汞吸附性能如图5所示。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。