一种生物陶复合材料及其袋装产品、制备方法和应用与流程

文档序号:19275014发布日期:2019-11-29 21:59阅读:266来源:国知局
一种生物陶复合材料及其袋装产品、制备方法和应用与流程
本发明属于吸附材料领域,涉及一种吸附性复合材料及其袋装产品、制备方法和应用。
背景技术
:传统吸附材料如活性炭的存在以下问题:吸附有毒气体如甲苯、苯和多环芳烃等voc虽然速度快但不能降解,很快吸附饱和;饱和后需要高温(110℃以上)一氧化碳和水蒸气进行再生;对放射性碘的吸附后,高温(65℃以上)时容易脱落;对放射性物质吸附后难以实现物理减容。零价铜作为新型催化剂取代贵金属催化剂,一直是化工领域的热点。但在常温下,零价铜难以存在,多以氧化铜的形式共生,因此难以稳定地实现工业控制。例如石化材料合成中的加氢合成(例如一氧化碳加氢合成甲醇)。技术实现要素:针对上述现有技术中存在的不足和问题,本发明的第一个目的是提供一种吸附性复合材料,其能够快速吸附voc气体及水中多环芳烃,快速吸附固定高放射性碘,吸附放射性铯并快速过滤吸附挥发到大气中的碘铯气溶胶。本发明的第二个目的是提供一种上述吸附性复合材料的袋装吸附性复合材料产品。本发明的第二个目的是提供一种吸附性复合材料的制备方法,其能够以简单的方式制得上述吸附性复合材料。本发明的第三个目的是提供一种吸附性复合材料的应用,包括在voc气体及水中多环芳烃的吸附、或高放射性碘的吸附和固定、或放射性铯的吸附、或挥发到大气中的碘铯气溶胶的过滤吸附中的应用。根据本发明的第一方面,本发明采用如下技术方案:一种吸附性复合材料,包括:多孔陶瓷载体,其含有碳;零价铁,其至少形成于所述多孔陶瓷载体的孔内;以及零价铜,其至少形成于所述多孔陶瓷载体的孔内。优选地,所述零价铁和所述零价铜的质量比为1∶5~1∶20。更优选地,所述零价铁和所述零价铜的质量比为1∶3~1∶15。进一步地,所述零价铁和所述零价铜的质量比为1∶4.5~1∶10。优选地,所述多孔陶瓷载体具有纳米孔和/或微米孔,至少所述纳米孔和/或所述微米孔的孔壁上形成有所述零价铁和所述零价铜。在一些实施例中,多孔陶瓷载体的表面上也形成有所述零价铁和零价铜。更优选地,所述多孔陶瓷载体为具有孔径为1~50nm的介孔的介孔载体。具体地,所述多孔陶瓷载体的粒径为0.1~5mm。优选地,所述多孔陶瓷载体中碳的质量百分比为2~30%。优选地,所述多孔陶瓷载体由包含陶瓷原料和活性细菌的混合物焙烧形成,所述活性细菌为所述多孔陶瓷载体中碳的碳源。更优选地,所述陶瓷原料包括硅藻土和膨润土中的一种或两种。根据本发明的第二个方面,本发明采用如下技术方案:一种袋装吸附性复合材料产品,包括密封袋及如上所述的吸附性复合材料,所述吸附性复合材料密封在所述密封袋内。优选地,所述吸附性复合材料的孔中填充有惰性气体。具体地,所述惰性气体为氦气。氦气具体位于吸附性复合材料的多孔陶瓷载体的孔内,使用时氦气因为分子量小,易于释出从而腾出空间,加快吸附速度。根据本发明的第三个方面,本发明采用如下技术方案:一种如上所述的生物陶复合材料的制备方法,包括如下步骤:将含碳的多孔陶瓷载体恒温浸泡在含有硫酸亚铁溶液和硫酸铜的溶液中;将浸泡后的多孔陶瓷载体置于氢气气氛中,加热烧制。优选地,所述制备方法还包括如下步骤:向烧制好的复合材料中通入惰性气体,加热使惰性气体和残存在所述复合材料孔内的水分进行置换。具体地,惰性气体为氦气,克服常温零价铜、铁被氧化的状况,用氦气惰性气体保护,氦气冲入可以进入复合材料的纳米孔、介孔(1-50纳米)以及微孔保护,所以保护更加充分。更优选地,所述进行置换的实施过程为:向烧制好的复合材料通入氦气,微波加热使氦气和残存在所述复合材料内的水分置换。优选地,所述制备方法具体包括如下步骤:将含碳的多孔陶瓷载体恒温浸泡在硫酸亚铁溶液和硫酸铜溶液中2~4小时后取出;在氢气气氛中,将浸泡后的多孔陶瓷载体在400~500℃保温加热2~6小时以烧制复合材料,冷却至常温;向烧制好的复合材料通入氦气,加热使氦气和残存在所述复合材料内的水分置换,制得所述生物陶复合材料。优选地,将浸泡后的多孔陶瓷载体以5℃/min的升温速度升温至400~500℃,保温加热2~6小时以烧制复合材料。优选地,所述进行置换的实施过程为:向烧制好的复合材料通入氦气,以耐微波的密封袋密封,置于微波炉中进行加热处理1~3分钟,使惰性气体和残存在所述复合材料内的水分置换,制得所述生物陶复合材料。微波加热使得氦气和残存在生物陶复合材料内的水分置换,实现内在保护。使用时氦气因为分子量小,易于释出从而腾出空间,加快吸附速度。本申请中,“常温”是指20~25℃。优选地,含碳的所述多孔陶瓷载体的制备步骤包括:将陶瓷原料和活性细菌搅拌混合;氮气气氛中焙烧,冷却,制得所述含碳的多孔陶瓷载体。更优选地,活性细菌占所述多孔陶瓷载体原料的质量百分比为70~80%。进一步地,活性细菌占所述多孔陶瓷载体原料的质量百分比为77~82%。更优选地,含碳的所述多孔陶瓷载体的制备还包括在将所述陶瓷原料和活性细菌混合后、焙烧前,进行造粒的步骤。更优选地,所述陶瓷原料包括硅藻土和膨润土。在一优选的实施例中,含碳的所述多孔陶瓷载体由如下步骤制得:将陶瓷原料和活性细菌搅拌混合,喷雾加水;在恒温箱中110~130℃干燥;氮气气氛中焙烧至800~900℃,冷却,制得含碳的多孔陶瓷载体。在一具体的实施例中,所述含碳的多孔陶瓷载体由如下步骤制得:800目硅藻土10-15%,1200目膨润土8-12%,活性细菌77-82%,搅拌混合20~40min,喷雾加水造粒机造粒;120℃恒温箱干燥10~13小时;氮气炉保护焙烧至800~900℃,升温速度5℃/min,冷却,制得介孔材料,即为所述含碳的多孔陶瓷载体。其中,膨润土吸收活性细菌中的水分使得细菌进入硅藻土孔内和膨润土层间,细菌作为骨架在碳化过程中形成介孔,碳在介孔中形成还原性的保护气氛。根据本发明的第四个方面,本发明采用如下技术方案:一种如上所述的吸附性复合材料及如上所述的制备方法制得的吸附性复合材料在voc气体及水中多环芳烃的吸附、或高放射性碘的吸附和固定、或放射性铯的吸附、或挥发到大气中的碘铯气溶胶的过滤吸附中的应用。本发明采用以上方案,相比现有技术至少具有如下优点:在还原性多孔陶瓷载体中制备零价铜、零价铁作为催化剂,碳和零价铁相互协同作用,保护零价铜不被氧化,实现以常温存在,且零价铜在碳和零价铁的保护下以共生的方式增加了生物陶复合材料的使用范围。可以以加速对voc气体以及海水中对多环芳烃的定向吸附;实现对高放射性碘-131,129的快速吸附和固定;实现对放射性cs的吸附;对于含放射性碘、cs的核电废水中碘和cs易于挥发到大气中形成气溶胶,在零价铜和零价铁的催化下,本发明的生物陶复合材料提高吸附速度1倍以上;对已经挥发到空气中的碘铯气溶胶,本发明的生物陶复合材料可以快速实现过滤吸附,净化空气,保护安全。此外,由于采用多孔陶瓷载体为基体,吸附放射性碘的危险废物可以实现快速压力减容。本发明的制备方法能够以简单的方式获得零价铜。附图说明图1a、1b分别示出了不同区域中铁铜的分布及其吸附分布;图2a、2b分别为图1a、1b中第1个区域的测定结果图;图3a、3b分别为图1a、1b中第2个区域的测定结果图;图4a、4b分别为图1a、1b中第3个区域的测定结果图;图5a、5b分别为图1a、1b中第4个区域的测定结果图。具体实施方式下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域的技术人员理解。原材料:800目硅藻土;1200目膨润土;活性细菌:用营养液、培养基培养或从污水处理厂活性污泥中提取。硫酸铜(分析纯);硫酸亚铁(分析纯);氢气;氦气。实施例1、还原性介孔陶瓷的制备按照如下步骤制备还原性介孔陶瓷以用作生物陶复合材料的含碳多孔陶瓷载体:1、取800目硅藻土1.2kg,1200目膨润土1.0kg,活性细菌8.0kg%,搅拌混合30分钟,喷雾加水造粒机造粒。2、120℃恒温箱干燥12小时。3、氮气炉保护焙烧至850度,升温速度5℃/min,冷却,制得还原性介孔陶瓷,其为颗粒状,粒径为0.1~5mm。实施例2、吸附性复合材料的制备按如下步骤分别制得六种铁铜比例不同的吸附性复合材料:1、将六组100g实施例1制得的介孔陶瓷材料放置在玻璃容器中,分别加入6、8、10、12、14、16ppm(以铁计算)的硫酸亚铁水溶液和80ppm(以铜计算)的硫酸铜水溶液各50毫升,85℃恒温浸泡3小时取出;2、将浸泡后的介孔陶瓷材料放入电热窑炉中升温至450℃(升温速度5℃/min),通入氢气还原保护,保温4小时。冷却至常温。3、取出烧制好的催化陶瓷材料,通入氦气,以可以耐受微波的塑料袋密封;4、将袋装催化剂陶瓷微波炉1分钟保存,分别制得六种吸附性复合材料,依次记为a1、a2、a3、a4、a5和a6。对比例、不含碳的吸附性复合材料的制备1、取800目硅藻土1.2kg,1200目膨润土1.0kg,搅拌混合30分钟,喷雾加水造粒机造粒。2、120℃恒温箱干燥12小时。3、氮气炉保护焙烧至850度,升温速度5℃/min,冷却,制得多孔陶瓷,其为颗粒状,粒径为0.1~5mm。4、将步骤1-3制得的多孔陶瓷材料放置在玻璃容器中,加入12ppm(以铁计算)的硫酸亚铁水溶液和80ppm(以铜计算)的硫酸铜水溶液各50毫升,85℃恒温浸泡3小时取出;5、将浸泡后的多孔陶瓷材料放入电热窑炉中升温至450℃(升温速度5℃/min),通入氢气还原保护,保温4小时。冷却至常温。6、取出烧制好的催化陶瓷材料,通入氦气,以可以耐受微波的塑料袋密封;7、将袋装催化剂陶瓷微波炉1分钟保存,制得不含碳的吸附性复合材料。实施例3、生物陶复合材料中零价铁和零价铜的表征分别对实施例2制得的六种生物陶复合材料进行fib纵向切片,并测试化学成分分布,第1、2、3、4区扫描测定。以其中的一种生物陶复合材料为例,对其进行fib纵向切片并进行titanchemistemmapping,图1a、1b分别示出了不同区域中铁铜的分布及其吸附分布;分别对图1a、1b中的第1、2、3、4区扫描测定,测定结果分别见图2a和2b、图3a和3b、图4a和4b、图5a和5b,零价铁和零价铜的比例为1∶4.5~1∶10,其中在介孔孔壁区域,铁铜比例最高。上述六种生物陶复合材料的零价铁和零价铜的比例测定结果具体见表1。实施例4、生物陶复合材料对原油中苯系物的吸附检测材料:实施例2制得的六种不同铁铜比例的吸附性复合材料、对比例制得的不含碳的吸附性复合材料、取自渤海海滨秦皇岛市黄金海岸翡翠岛和天津滨海的海水、来源于中石油的原油,且按原油∶海水=1∶100(毫升)人工混合模拟海水被原油污染。苯系物、多环芳烃检测方法:挥发性苯系物测定采用吹扫-捕集-气相色谱-质谱联用法;16种多环芳烃的测定采用高效液相色谱法。检测方法:1、将石油与海水按1∶100的比例充分震荡混合12小时,静置6小时。2、取200毫升油水混合物加入250ml的试剂瓶中,分别加入4克不同的吸附性复合材料,在摇床上以100rpm进行震荡,按加入吸附性复合材料后2、4、8、16、24、36、48、72小时取样密封,4℃倒置保存,以不加吸附性复合材料为对照,样品送中国地质科学研究院国家地质测试中心测定。测定结果见表1。表17种吸附性复合材料对原油中苯系物的吸附检测结果(ng/ml)石油与海水混合物中的挥发性苯系物如苯、甲苯、乙苯、间对二甲苯、邻二甲苯、苯乙烯成分在加入吸附性复合材料后2-4小时左右即被完全吸附到检测极限值以下。说明不同的吸附性复合材料都对石油中的苯系物有很强的吸附能力。不同的吸附性复合材料相比较,吸附性复合材料a4(铜铁比例为8)对石油中苯系物的吸附和降解能力较高,在加入后2小时,石油与海水混合物中的挥发性苯系物即被吸附到检测极限值以下。对照组由于没有催化剂的存在,其吸附能力、吸附速度都比较弱。对比例制得吸附性复合材料中由于没有碳的存在,无法维持零价铜的价位,导致催化分解效果变得很差。实施例5、吸附性复合材料a4对原油中苯系物的吸附检测采用如实施例4的检测方法对吸附性复合材料a4(铜铁比例为8)对原油中苯系物的吸附能力进一步检测。检测结果见表2。表2吸附性复合材料a4对石油中苯系物的吸附能力检测结果挥发性有机物单位报出限0h2h6h14h26h50h74h98h苯ng/ml1.0011725904243932499408.9<1.00<1.002.2甲苯ng/ml1.005151404213576272.91<1.00<1.002.00乙苯ng/ml1.00341230130<1.00<1.00<1.00<1.00<1.00间对二甲苯ng/ml1.001223824170<1.00<1.00<1.00<1.00<1.00邻二甲苯ng/ml1.00765598326107<1.00<1.00<1.00<1.00苯乙烯ng/ml1.00<1.00<1.00<1.00<1.00<1.00<1.00<1.00<1.00多环芳烃单位报出限0h2h6h14h26h50h74h98h萘ng/l1252552213616512051.445.452.7苊ng/l71701468536.42034.15<7.0050.9芴ng/l538035654.921.522.7<5.00<5.006.93菲ng/l1580473193.179.316727.822.496.4蒽ng/l516.212.5<5.00<5.00<5.00<5.00<5.00<5.00荧蒽ng/l788.923.98.36<7.0013.9<7.00<7.00<7.00芘ng/l410453.922.15.4135.3<4.00<4.0011.1苯并[a]蒽ng/l352.614.116.1<3.0019<3.00<3.00<3.00屈ng/l3<3.00<3.00<3.00<3.00<3.00<3.00<3.00<3.00苯并[b]荧蒽ng/l4<4.00<4.00<4.00<4.00<4.00<4.00<4.00<4.00苯并[k]荧蒽ng/l2<2.00<2.00<2.00<2.00<2.00<2.00<2.00<2.00苯并[a]芘ng/l2<2.00<2.00<2.00<2.00<2.00<2.00<2.00<2.00二苯并[a,h]蒽ng/l4<4.00<4.00<4.00<4.00<4.00<4.00<4.00<4.00苯并[g,h,i]苝ng/l4<4.00<4.00<4.00<4.00<4.00<4.00<4.00<4.00茚并[1,2,3-cd]芘ng/l5<5.00<5.00<5.00<5.00<5.00<5.00<5.00<5.00苊烯ng/l20<20.0<20.0<20.0<20.0<20.0<20.0<20.0<20.0实验结果表明,加入吸附性复合材料a4后14小时,苯系物中的乙苯和间对二甲苯被完全吸附;加入吸附性复合材料a4后26小时,苯系物中的邻二甲苯被完全吸附;加入吸附性复合材料a4后50小时,苯系物中的苯和甲苯被完全吸附。对萘、苊、芴、菲、蒽、荧蒽、芘和苯并[a]蒽等半挥发物质在26-98小时区间均有高的吸附能力,部分成分在26小时可完全吸附。实验结果说明a4对原油中的挥发性苯系物和半挥发性多环芳烃有非常高的吸附能力。此外,原油与海水混合物中的苯系物质在26-50小时的时候已被降解到报出限以下,说明吸附性复合材料a4对原油中苯系物的吸附潜力还很高,可以降低优化复合材料的用量。即使在海水复杂环境下,本发明的吸附性复合材料对石油残毒的实现了定向吸附。在72小时以后仍然有对苯系物的吸附潜力。实施例6、对苯系物的吸附能力比较将颗粒直径一样的三种材料5g分别植入密闭容器内;通入苯并[a]蒽作为吸附试验材料;达到吸附饱和后的材料在常温下进行10日降解试验,测得平均降解速率;另外,将吸附饱和后的材料在充了3000ng/立方米的pahs的密封舱中测定气体浓度变化,得到动态平衡时的吸附/降解能力。测试结构见表3。结果表明:铜催化剂的存在使得动态平衡的吸附量保持在高水平上,说明其活性高出未加催化剂的碳介孔陶瓷1-22倍。实施例7、吸附性复合材料对放射性碘吸附性能测试以及减容测试材料:催化微鼻过滤材料,mn-10-20-1,不含催化剂的对照材料;吸附性复合材料,不含催化剂的介孔陶瓷材料对照;放射性na131i溶液:活度约为3.79×104bq;测试用自来水:取自中国原子能科学研究院工作区;去离子水:elix3纯水系统生产,美国millipore公司;电子天平:pb3002-e型,d=0.01g,梅特勒-托利多仪器有限公司;分离柱:玻璃材质,柱内径10mm,床高160mm;低本底反康γ谱仪:hpge探测器与dspec谱仪均为美国ortec公司出品。测试材料预处理称取催化微鼻过滤材料、吸附性复合材料及其对照材料各10.00克,催化微鼻过滤材料6.77克用去离子水浸泡过夜,放置备用。催化微鼻过滤材料、吸附性复合材料及其对照材料分别对131i吸附率的测定将放射性na131i溶液分成三等份,一份用100ml自来水稀释,直接用于γ谱仪测量,样品编号为diyyph2;其它两份用50ml自来水稀释,其ph值约为2,放置备分析用。湿法装柱装催化微鼻过滤材料,分离柱两端用少量聚四氟乙烯丝填充,加入已制备的一份50ml含131i溶液,控制流速为1ml·min-1,再加入50ml自来水淋洗分离柱,合并流出液,γ谱仪测量,样品编号为di10201ph2。将另一份na131i中加入已预处理的吸附性复合材料,搅拌吸附20min,过滤;分两次加入25ml自来水,搅拌吸附20min,过滤,收集滤液,γ谱仪测量,样品编号为diswtph2。测试结果见表4。表4对131i吸附性能测量结果吸附了放射性物质的材料属于危险废物,其最大限度的减少容量和固定放射性物质一直是一个难题。本发明的吸附性复合材料属于陶瓷材料,采取高温密闭煅烧的办法减少容量和固定。本发明吸附性复合材料吸附放射性碘-131后,装入耐高温匣钵内,在煅烧炉内升温至1300℃,陶瓷材料体积50立方厘米,烧得玻璃相材料1.8立方厘米,减容效率96.4%,且将放射性物质固定在晶体内。上述实施例只为说明本发明的技术构思及特点,是一种优选的实施例,其目的在于熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限定本发明的保护范围。凡根据本发所作的等效变换或修饰,都应涵盖在本发明的保护范围之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1