一种芳构化催化剂及其制备方法与应用与流程

文档序号:20760460发布日期:2020-05-15 18:02阅读:226来源:国知局
一种芳构化催化剂及其制备方法与应用与流程

本发明涉及催化剂技术领域,尤其涉及一种芳构化催化剂及其制备方法与应用。



背景技术:

芳烃是有机化工重要的基础原料,目前我国的芳烃年消耗量巨大。将丰富廉价的低碳烃类组分转化为高附加值的苯、甲苯、二甲苯已经成为近30年来重要的研究热点。

常用于低碳烃芳构化的催化剂一般为金属负载型催化剂(如pt/al2o3、cr2o3/al2o3等)和分子筛型催化剂(如mfi型、mcm系、l分子筛等)。目前,研究较多的分子筛型催化剂为zsm-5分子筛催化剂。

专利cn1938245n中公开了一种具有mfi结构的pt/ga-zsm-5分子筛催化剂,该催化剂可用于c2~c6烷烃的芳构化反应,对于丙烷来说,其产物中的芳烃选择性仅能达到30~40%左右。

专利us4175057公开了一种负载zn、ga、cu的zsm-5分子筛催化剂,但该催化剂用于丙烷和丁烷的芳构化,其芳烃选择性仅为30~40%。

专利cn1028729.1中公开了一种芳构化催化剂,为金属改性的氢型zsm-5分子筛,但是该催化剂仅针对c4~c6低碳烷烃的芳构化反应,且芳烃收率也仅能达到45%。

由以上现有技术可知,目前关于低碳烷烃芳构化反应研究最多的催化剂主要是以镓、锌、铂等金属负载的zsm-5型分子筛。其中镓改性的zsm-5分子筛具有较好的低碳烷烃芳构化反应催化活性。但目前镓改性的zsm-5分子筛型催化剂仍然存在着一些问题,例如,芳烃选择性有待进一步的提升,催化剂的使用寿命和热稳定性还需进一步改善。



技术实现要素:

本发明的目的在于提供一种芳构化催化剂,该芳构化催化剂可提高镓的分散度,用于低碳烷烃芳构化反应,具有较高的催化活性、较高的芳烃选择性、良好的热稳定性和寿命。

为了实现上述发明目的,本发明提供以下技术方案:

本发明提供了一种芳构化催化剂,包括无机氧化物和改性ga/zsm-5分子筛;所述改性ga/zsm-5分子筛包括改性zsm-5分子筛和负载在所述改性zsm-5分子筛孔道和/或表面的ga,所述改性zsm-5分子筛具有微孔、介孔和大孔的多级孔结构。

所述改性ga/zsm-5分子筛中ga的负载量为0.1~5wt.%。

所述改性ga/zsm-5分子筛的质量为芳构化催化剂质量的30~85%。

所述芳构化催化剂的表面积为250~550m2/g。

本发明提供了上述方案所述芳构化催化剂的制备方法,包括以下步骤:

(1)将硅源加入到包括铝源和导向剂的混合水溶液中,进行水热反应,对水热反应的固体产物进行焙烧,得到zsm-5分子筛母体;

(2)将所述zsm-5分子筛母体、水和导向剂混合,水热处理后对所得固体产物进行焙烧;

(3)将所述步骤(2)焙烧所得产物进行碱处理,得到多级孔的zsm-5分子筛;

(4)将所述多级孔的zsm-5分子筛进行铵离子改性,焙烧后得到改性zsm-5分子筛;

(5)将所述改性zsm-5分子筛与镓盐溶液进行离子交换,焙烧后得到改性ga/zsm-5分子筛;

(6)将所述改性ga/zsm-5分子筛与无机氧化物前驱体混合,依次经过成型、干燥和焙烧,得到芳构化催化剂。

优选的,所述步骤(1)中水热反应的温度为120~200℃,时间为1~6天;所述步骤(2)中水热处理的时间为1~4天。

优选的,所述步骤(1)中硅源和铝源的摩尔比为20:1以上,硅源和水的摩尔比为10~100:1,硅源与导向剂的摩尔比为1:0.1~0.6;所述硅源与铝源的摩尔比以氧化硅和氧化铝的物质的量计,硅源与水的摩尔比以氧化硅与水的物质的量计,硅源与导向剂的摩尔比以氧化硅与导向剂的物质的量计。

优选的,所述步骤(1)中焙烧的温度为450~600℃,时间为3~15h;所述步骤(2)中焙烧的温度为450~600℃,时间为3~8h。

优选的,所述步骤(3)中碱处理的温度为40~80℃,采用的碱液为氢氧化钠溶液、碳酸钠溶液、碳酸氢钠溶液、氢氧化钾溶液、碳酸钾溶液、碳酸氢钾溶液、四丙基氢氧化铵溶液、四乙基氢氧化铵溶液和四甲基氢氧化铵溶液中的一种或多种。

本发明提供了上述方案所述的芳构化催化剂或上述方案所述制备方法制备得到的芳构化催化剂在催化低碳烷烃进行芳构化反应中的应用。

本发明提供了一种芳构化催化剂,包括无机氧化物和改性ga/zsm-5分子筛;所述改性ga/zsm-5分子筛包括改性zsm-5分子筛和负载在所述改性zsm-5分子筛孔道和/或表面的ga,所述改性zsm-5分子筛具有微孔、介孔和大孔的多级孔结构。本发明的芳构化催化剂中改性zsm-5分子筛具有微孔、介孔和大孔的多级孔结构,能够降低芳构化反应中扩散阻力的影响,延缓积碳速率,大幅度提高催化剂的稳定性和寿命,此外,多级孔结构还提高了ga的分散度,提高了催化剂的催化活性和选择性。

本发明提供了上述芳构化催化剂的制备方法,以zsm-5分子筛为原料,获得了既能保证zsm-5分子筛独特的孔道结构,又具有大孔、介孔、微孔的多级孔的催化剂,从而降低芳构化反应中扩散阻力的影响,延缓积碳速率,大幅度提高了催化剂的稳定性和寿命;最后,本发明负载ga提高了催化剂催化低碳烷烃芳构化的能力,提高了产物中芳烃的选择性。

本发明还提供了上述芳构化催化剂或上述制备方法制备得到的芳构化催化剂在催化低碳烷烃进行芳构化反应中的应用。实施例的结果表明,将本发明提供的芳构化催化剂用于催化丙烷的芳构化反应,催化剂表现出很高的稳定性,再生使用寿命可以达到320h以上,芳烃的选择性能够达到73.3%。

附图说明

图1为本发明水热处理和碱处理的原理示意图;

图2为实施例2催化剂的tem图;

图3为实施例2催化剂的bet吸附曲线;

图4为实施例2催化剂的孔径分布图;

图5为实施例2催化剂反应后的tem图;

图6为实施例2催化剂在540℃下催化丙烷芳构化反应的评价结果。

具体实施方式

本发明提供了一种芳构化催化剂,包括无机氧化物和改性ga/zsm-5分子筛;所述改性ga/zsm-5分子筛包括改性zsm-5分子筛和负载在所述改性zsm-5分子筛孔道和/或表面的ga,所述改性zsm-5分子筛具有微孔、介孔和大孔的多级孔结构。

本发明提供的芳构化催化剂包括无机氧化物。在本发明中,所述无机氧化物优选为sb粉、干胶粉、铝溶胶、高岭土和拟薄水铝石中的一种或多种。在本发明中,所述无机氧化物的质量优选为芳构化催化剂质量的15%~70%,更优选为40~70%。在本发明中,所述无机氧化物作为粘合剂将改性zsm-5分子筛粘合在一起,且能够提高芳构化催化剂的选择性、稳定性和使用寿命。

本发明提供的芳构化催化剂包括改性ga/zsm-5分子筛,所述改性ga/zsm-5分子筛的质量优选为芳构化催化剂质量的30~85%,进一步优选为40~70%。在本发明中,所述改性ga/zsm-5分子筛的晶粒尺寸优选为150~1000nm。在本发明中,所述改性ga/zsm-5分子筛包括改性zsm-5分子筛和负载在所述改性zsm-5分子筛孔道和/或表面的ga,所述改性zsm-5分子筛具有微孔、介孔和大孔的多级孔结构。在本发明中,所述微孔的孔径小于2nm;所述介孔的孔径为2~50nm,优选为3~10nm,进一步优选为4-7nm;所述大孔的孔径优选大于50nm。本发明所述改性zsm-5分子筛具有微孔、介孔和大孔的多级孔结构,能够降低芳构化反应中扩散阻力的影响,延缓积碳速率,大幅度提高催化剂的稳定性和寿命,此外,多级孔结构还提高了ga的分散度,提高了催化剂的催化活性和选择性。

在本发明中,所述改性ga/zsm-5分子筛中ga的负载量优选为0.1~5wt.%,进一步优选为0.2~2wt.%。本发明所述ga作为催化剂的活性成分催化芳构化反应。在本发明中,所述ga以单原子或小团簇形式位于改性zsm-5分子筛的孔道和/或表面,而不在分子筛的骨架内。

在本发明中,所述芳构化催化剂的表面积优选为300~500m2/g,进一步优选为350~450m2/g。

本发明提供了上述技术方案所述芳构化催化剂的制备方法,包括以下步骤:

(1)将硅源加入到包括铝源和导向剂的混合水溶液中,进行水热反应,对水热反应的固体产物进行焙烧,得到zsm-5分子筛母体;

(2)将所述zsm-5分子筛母体、水和导向剂混合,水热处理后对所得固体产物进行焙烧;

(3)将所述步骤(2)焙烧所得产物进行碱处理,得到多级孔的zsm-5分子筛;

(4)将所述多级孔的zsm-5分子筛进行铵离子改性,焙烧后得到改性zsm-5分子筛;

(5)将所述改性zsm-5分子筛与镓盐溶液进行离子交换,焙烧后得到改性ga/zsm-5分子筛;

(6)将所述改性ga/zsm-5分子筛与无机氧化物前驱体混合,依次经过成型、干燥和焙烧,得到芳构化催化剂。

本发明将硅源加入到包括铝源和导向剂的混合水溶液中,进行水热反应,对水热反应固体产物进行焙烧,得到zsm-5分子筛母体。

本发明将硅源加入到包括铝源和导向剂的混合水溶液中,得到前驱体溶液。在本发明中,所述硅源和铝源的摩尔比优选为20:1以上,更优选为30~400:1,最优选为30~300:1;水和硅源的摩尔比优选为10~100:1,更优选为20~50:1,最优选为30:1;硅源与导向剂的摩尔比优选为1:0.02~0.6更优选为1:0.05~0.5;所述硅源与铝源的摩尔比以氧化硅和氧化铝的物质的量计,硅源与水的摩尔比以氧化硅与水的物质的量计,硅源与导向剂的摩尔比以氧化硅与导向剂的物质的量计。

在本发明中,所述硅源优选为正硅酸乙酯、正硅酸甲酯、正硅酸丙酯,白炭黑和硅溶胶中的一种或多种,更优选为正硅酸乙酯、正硅酸甲酯或正硅酸丙酯;所述铝源优选为偏铝酸钠、硝酸铝或硫酸铝;所述导向剂优选为乙二胺或正丁胺或四丙基氯化铵或四丙基溴化铵溶液或四丙基氢氧化铵溶液,更优选为四丙基氢氧化铵溶液或四丙基溴化铵溶液或四丙基氯化铵溶液。

在本发明中,所述前驱体溶液中优选还包括无机碱,所述无机碱与硅源的摩尔比优选为0.5:1以下,更优选为0.01~0.3:1,所述无机碱与硅源的摩尔比以无机碱与氧化硅的物质的量计。在本发明中,所述无机碱优选为氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠、碳酸钾或碳酸氢钾。

在本发明中,所述硅源的加入方式没有特殊要求,能够保证前驱体溶液混合均匀即可。本发明优选在搅拌条件下将硅源加到包括铝源和导向剂的混合水溶液中,随后继续搅拌1~24h,以使前驱体溶液混合均匀。

当前驱体溶液还包括无机碱时,本发明优选在搅拌条件下将硅源加到包括铝源、无机碱和导向剂的混合水溶液中。

得到前驱体溶液后,本发明将所述前驱体溶液进行水热反应。在本发明中,所述水热反应的温度优选为120~200℃,更优选为140~180℃;时间优选为1~6天,更优选为2~5天。本发明所述水热反应过程中,通过导向剂使得前驱体溶液成核,晶化,最终形成晶化zsm-5分子筛。

水热反应后,本发明对所述水热反应的固体产物进行焙烧,得到zsm-5分子筛母体。在本发明中,所述焙烧的温度优选为450~600℃,更优选为500~600℃;焙烧的时间优选为2~15h,更优选为5~10h。在本发明中,所述焙烧的气氛优选为空气气氛。

本发明优选对水热反应所得混合物料依次进行离心、洗涤和干燥,得到水热反应的固体产物。本发明对所述离心和洗涤的具体实施方式没有特殊要求,采用本领域技术人员熟知的离心和洗涤方式即可。本发明优选将离心所得固体洗涤至中性。在本发明中,所述干燥的温度优选为40~150℃,更优选为60~120℃,所述干燥的时间优选为8~12h。

得到zsm-5分子筛母体后,本发明将所述zsm-5分子筛母体、水和导向剂混合,水热处理后对所得固体产物进行焙烧。

本发明将所述zsm-5分子筛母体、水和导向剂混合,得到混合物料。在本发明中,所述导向剂优选与zsm-5分子筛母体制备过程中的导向剂相同。在本发明中,所述zsm-5分子筛母体与水的用量比优选为1g:(1~10)ml,更优选为1g:(3~5)ml;所述zsm-5分子筛母体与导向剂的用量比优选为1g:(1~10)ml,更优选为1g:(3~5)ml。

在本发明中,所述混合物料优选还包括无机碱和铝源;所述无机碱和铝源优选与zsm-5分子筛母体制备过程中的无机碱和铝源相同,这里不再赘述。在本发明中,所述无机碱与zsm-5分子筛母体中硅的摩尔比优选为0.5:1以下,更优选为0.01~0.3:1;所述铝源与zsm-5分子筛母体中硅的摩尔比优选为0.05:1以下,更优选为0.00001~0.03:1,此处的铝源以al原子的摩尔比计,此处zsm-5分子筛母体中硅的含量通过测量得到,指的是si原子的含量。本发明对所述混合的方式没有特殊要求,采用本领域技术人员熟知的混合方式即可。在混合前,本发明优选将所述zsm-5分子筛母体研磨成粉末。

得到混合物料后,本发明对所述混合物料进行水热处理。在本发明中,所述水热处理的温度优选为120~200℃,更优选为140~180℃;水热处理的时间优选为1~4天,更优选为1~3天。本发明所述水热处理过程中zsm-5分子筛母体中的部分硅和铝溶解之后再次在导向剂的作用下重新晶化,形成中空结构的zsm-5分子筛(中空结构即为大孔),水热处理前后的分子筛si/al比几乎不变。

本发明优选对水热处理所得混合物料依次进行离心、洗涤和干燥,得到固体产物。本发明对所述离心和洗涤的具体实施方式没有特殊要求,采用本领域技术人员熟知的离心和洗涤方式即可。本发明优选将离心所得固体洗涤至中性。在本发明中,所述干燥的温度优选为40~150℃,更优选为60~120℃,所述干燥的时间优选为3~15h。

得到固体产物后,本发明对所述固体产物进行焙烧。所述焙烧的温度优选为450~600℃,更优选为500~600℃;焙烧的时间优选为1~24h,更优选为3~15h,最优选为5~10h。本发明所述焙烧过程中,将固体产物骨架内的结构导向剂除去,形成了微孔,最终使得本发明的zsm-5分子筛在具有大孔结构的同时还具有了大量的微孔结构。

完成所述焙烧后,本发明对焙烧所得产物进行碱处理。本发明进行碱处理时,采用的碱液优选为氢氧化钠溶液、碳酸钠溶液、碳酸氢钠溶液、氢氧化钾溶液、碳酸钾溶液、碳酸氢钾溶液、四丙基氢氧化铵溶液、四乙基氢氧化铵溶液和四甲基氢氧化铵溶液中的一种或多种;所述碱处理的温度优选为30~100℃,更优选为40~100℃,所述碱处理的时间优选根据碱液的种类确定。当采用的碱液为氢氧化钠和/或氢氧化钾时,所述碱液的浓度优选为0.005~0.3mol/l,所述碱处理的时间优选为5~100min;当采用的碱液为碳酸钠、碳酸钾、碳酸氢钠、碳酸氢钾、四丙基氢氧化铵、四乙基氢氧化铵和四甲基氢氧化铵中的一种或多种时,所述碱液的浓度优选为0.01~5.0mol/l,所述碱处理的时间优选为10~300min。本发明所述碱处理能够在具有大孔结构的zsm-5分子筛的外壳形成介孔结构,得到具有微孔、大孔和介孔的多级孔zsm-5分子筛。具体的原理图参见图1。由于具有大孔结构的zsm-5分子筛的外壳形成了介孔结构,在引入ga物种时,ga物种可以通过介孔结构扩散到空腔内部,提高ga物种的分散度;此外,在芳构化反应过程中形成的芳烃较为容易地从介孔中扩散出来,从而提高催化剂的抗积碳性能。

完成所述碱处理后,本发明优选还包括对碱处理后的产物进行离心、固体产物洗涤和干燥,得到多级孔的zsm-5分子筛。本发明对所述离心和洗涤的具体实施方式没有特殊要求,采用本领域技术人员熟知的离心和洗涤方式即可。本发明优选将固体产物洗涤至中性。在本发明中,所述干燥的温度优选为40~150℃,更优选为60~120℃,所述干燥的时间优选为3~15h。

得到多级孔的zsm-5分子筛后,本发明将所述多级孔zsm-5分子筛进行铵离子改性,焙烧后得到改性zsm-5分子筛。

本发明将所述多级孔的zsm-5分子筛进行铵离子改性。在本发明中,所述铵离子改性的温度优选为50~100℃,进一步优选为70~85℃;铵离子改性的时间优选为2~15h,更优选为6~12h。在本发明中,进行铵离子改性时采用的铵溶液优选为硝酸铵、氯化铵、硫酸铵和碳酸铵中的一种或多种;所述铵溶液的浓度优选为0.1~3mol/l,更优选为0.5~2mol/l。本发明优选将多级孔的zsm-5分子筛在搅拌条件下分散到铵溶液中进行铵离子改性。在本发明中,所述多级孔的zsm-5分子筛与铵溶液的固液比优选为1g:(5~60)ml,更优选为1g:(20~40)ml。本发明对所述搅拌的速率没有特殊要求,不引起液体飞溅即可。本发明优选通过多次铵离子改性以达到较好的改性效果。当采用多次铵离子改性时,上述铵离子改性的时间指的是总的改性时间,每次改性的时间优选为相等;上述铵离子改性过程中多级孔zsm-5分子筛与铵溶液的固液比指的是单次铵离子改性的固液比。本发明所述改性过程中铵离子与多级孔的zsm-5分子筛中的钠离子发生离子交换,交换后的分子筛呈酸性,若不进行铵改性,得到的催化剂没有反应活性。

在本发明中,所述焙烧的温度优选为450~600℃,更优选为500~550℃;所述焙烧的时间优选为1~10h,更优选为4~8h。本发明所述焙烧将nh4+离子分解形成h+离子和nh3气体,氨气以气体的形式被焙烧过程除去,留下h+离子。

在本发明中,所述焙烧之前,本发明优选还包括对铵离子改性后的产物进行干燥。在本发明中,所述干燥的温度优选为40~150℃,更优选为60~120℃,所述干燥的时间优选为3~15h。

得到改性zsm-5分子筛后,本发明将所述改性zsm-5分子筛与镓盐溶液进行离子交换,焙烧后得到改性ga/zsm-5分子筛。

在本发明中,所述镓盐溶液优选为氯化镓溶液、硝酸镓溶液或硫酸镓溶液;所述镓盐溶液的浓度优选为5mol/l以下,更优选为2mol/l以下。在本发明中,所述镓盐溶液中镓的质量对应上述技术方案中所述芳构化催化剂中ga的负载量。本发明优选在搅拌条件下将改性zsm-5分子筛分散到镓盐溶液中进行离子交换。本发明对所述搅拌的速率没有特殊要求,不引起液体飞溅即可。在本发明中,所述离子交换的时间优选为3~15h,离子交换的温度优选为60~100℃。本发明所述离子交换过程中,ga离子与氢离子发生离子交换,进入改性ga/zsm-5分子筛的孔道和/或附着到改性ga/zsm-5分子筛的表面。

在本发明中,所述焙烧的温度优选为400~600℃,更优选为450~550℃;所述焙烧的时间优选为1~10h,更优选为3~6h。本发明所述焙烧能够除去产物中的水。

在本发明中,所述焙烧之前,本发明优选还包括对铵离子改性后的产物进行干燥。在本发明中,所述干燥的温度优选为40~150℃,更优选为60~120℃,所述干燥的时间优选为3~15h。

得到改性ga/zsm-5分子筛后,本发明所述改性ga/zsm-5分子筛与无机氧化物前驱体混合,依次经过成型、干燥和焙烧,得到芳构化催化剂。

在本发明中,所述无机氧化物前驱体优选为sb粉、干胶粉、铝溶胶、高岭土和拟薄水铝石中的一种或多种;所述无机氧化物前驱体的用量根据最终芳构化催化剂中无机氧化物的组成确定。本发明对所述成型和干燥的具体实施方式没有特殊要求,采用本领域技术人员熟知的成型和干燥方式即可。在本发明中,所述焙烧的温度优选为500~550℃,焙烧的时间优选为2~10h。本发明所述焙烧的作用是将改性ga/zsm-5分子筛和无机氧化物更加稳定的结合在一起。本发明所述无机氧化物前驱体在成型时起到粘合的作用,在成型后,有利于增加催化剂的选择性、稳定性并延长使用寿命。

本发明提供了上述技术方案所述芳构化催化剂或上述技术方案所述制备方法制备得到的芳构化催化剂在催化低碳烷烃进行芳构化反应中的应用。

在本发明中,所述低碳烷烃优选为c2~c4烷烃中的一种或多种,更优选为丙烷和丁烷。在本发明中,所述芳构化反应中的温度优选为500~550℃,反应压力优选为常压,进料空速优选为0.3~2h-1

下面结合实施例对本发明提供的芳构化催化剂及其制备方法与应用进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。

实施例1

(1)称取0.1822g偏铝酸钠置于烧杯中,加入38.75g去离子水、20.336g质量分数为25%的四丙基氢氧化铵水溶液和0.1g氢氧化钠,搅拌至溶液澄清,之后缓慢滴加20.833g正硅酸四乙酯,搅拌12小时后将溶液转入到水热反应釜中,170℃晶化4天,离心去除母液,用去离子水洗涤到溶液成中性,在100℃下过夜干燥,在600℃下焙烧10小时,得到zsm-5分子筛母体;

(2)将制得的zsm-5分子筛母体研磨成粉末,称取1gzsm-5分子筛母体(测得含硅0.4g)、0.01g氢氧化钠和0.002g偏铝酸钠并分散于5ml水和3ml1mol/l的四丙基氢氧化铵溶液中,搅拌10分钟,再转移到水热反应釜中,在170℃下水热处理1天,离心去除母液,用去离子水洗涤到溶液成中性,在100℃下过夜干燥,在600℃下焙烧6小时,得到具有大孔和微孔结构的zsm-5分子筛;

(3)将得到的具有大孔和微孔结构的zsm-5分子筛用0.005~0.5mol/l的氢氧化钠溶液在60~65℃下处理15分钟,离心去除母液,用去离子水洗涤到溶液成中性,在100℃下过夜干燥,得到多级孔的zsm-5分子筛;

(4)用1mol/l的硝酸铵溶液在80℃离子交换两次,每次4个小时,离心去除母液,用去离子水洗涤3次,在100℃下过夜干燥,在550℃下焙烧6小时,得到改性zsm-5分子筛;

(5)将所得的改性zsm-5分子筛用硝酸镓溶液进行交换,镓占改性zsm-5分子筛质量的0.5%,在100℃下过夜干燥,在550℃下焙烧4小时,得到改性ga/zsm-5分子筛;

(6)按照本领域常规的方式,将所述改性ga/zsm-5分子筛14g与6gsb粉混合,依次经过成型、干燥和550℃焙烧6h,得到芳构化催化剂,记作催化剂1#。

实施例2

按照实施例1的步骤制备芳构化催化剂,不同之处在于将实施例1中偏铝酸钠的质量更换为0.3279g,将氢氧化钠更换为碳酸钠,碱处理时间为6h,其他条件不变,所得样品记作催化剂2#。

采用日本理学公司生产的jem2100-f型场发射透射电子显微镜对催化剂2#进行观察,结果如图2所示。图2显示,该催化剂具有微孔、介孔和大孔的多级孔结构,说明本发明合成出的分子筛确实为多级孔结构。

对催化剂2#进行bet吸附,得到的等温吸附曲线如图3所示。图3显示催化剂2#的bet比表面为392m2/g,孔体积为0.40cm3/g,其中微孔孔体积为0.085cm3/g。

对催化剂2#进行孔径测试,得到的孔径分布图如图4所示。图4显示催化剂2#的介孔孔径约为4nm。

实施例3

按照实施例1的步骤,不同之处在于步骤(1)中未使用氢氧化钠;步骤(2)中未使用氢氧化钠和偏铝酸钠,其他条件不变,所得样品记作催化剂3#.

对比例1

与实施例1的不同之处在于未进行步骤(2)的水热处理和步骤(3)的碱处理,具体的操作步骤如下:

称取0.1822g偏铝酸钠置于烧杯中,加入38.75g去离子水和20.336g质量分数为25%的四丙基氢氧化铵水溶液,搅拌至溶液澄清,之后缓慢加入20.833g正硅酸乙酯。搅拌12小时后将溶液转入到水热反应釜中,170℃晶化4天,离心去除母液,用去离子水洗涤到溶液成中性,在100℃下过夜干燥,在600℃下焙烧10小时,得到zsm-5分子筛母体;将制得的zsm-5分子筛母体研磨成粉末,根据步骤(4)中的方法进行铵盐交换,随后根据步骤(5)中的方法进行硝酸镓溶液离子交换,镓占载体质量的0.5%,在100℃下过夜干燥,在550℃下焙烧4小时,最后按照步骤(6)的方法得到催化剂,记作催化剂4#。

上述催化剂1#、2#、3#、4#中,改性ga/zsm-5分子筛的质量含量均控制为70%。

催化剂的应用

将上述1#、2#、3#、4#催化剂用于催化丙烷的芳构化反应,反应条件为:540℃,常压,进料空速(whsv)为0.9h-1,反应产物经冷凝器进行气液分离,气相产物和液相产物均用agilent7820a气相色谱分析,组分的分数为质量分数,反应结果见表1。

表1不同催化剂的评价结果

由表1的结果可知,催化剂4#是没有经过水热处理和任何碱液处理的传统催化剂,与实施例1、2中的催化剂1#和2#对比可以发现,催化剂4#的芳烃选择性只有41.1%,而催化剂2#的芳烃选择性可达到73.3%。

同时,对反应后的催化剂2#进行透射电镜测试,结果如图5所示。图5显示,反应后催化剂的结构形貌较反应前没有发生变化,也就是说该催化剂在高温反应之后,其结构依旧完整,表明本发明的催化剂具备良好的热稳定性。

催化剂的循环再利用

当催化剂2#分别反应75h、170h和270h后,对催化剂2#进行再生处理,再生处理的操作为:将失活的催化剂在540~550℃、流动的空气气氛中焙烧6~12h,将再生后的催化剂在540℃下催化丙烷芳构化反应,具体的反应条件同第一次的反应条件,反应结果见图6。由图6可知,催化剂在反应过程中芳烃选择性在70%左右,最高可达到73%,具有较高的芳烃选择性,而且较为稳定;图6中每个竖线指的是再生的过程,例如反应时间在75h左右处、170h处。每次再生之后丙烷的转化率又回到了较高的水平,而且比最开始时的转化率还要高,说明本发明的催化剂具有良好的再循环使用性能,再生使用寿命可达320h以上。

由以上实施例可知,本发明提供的芳构化催化剂用于催化低碳烷烃的芳构化反应,具有高催化活性、高选择性,良好的热稳定性、较长的使用寿命和再循环使用性能。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1