用于处理废气的催化剂的制作方法

文档序号:21693492发布日期:2020-07-31 22:18阅读:164来源:国知局
用于处理废气的催化剂的制作方法
本申请是基于申请号为201280059428.2、申请日为2012年11月30日、发明名称为“用于处理废气的催化剂”的中国专利申请的分案申请。发明背景1.发明领域本发明涉及用于处理燃烧废气、选择性催化还原(scr)贫燃废气中的nox的催化剂、制品及方法。2.相关技术的描述多数燃烧废气的最大部分包含相对良性的氮气(n2)、水蒸气(h2o)和二氧化碳(co2);但废气还含有相对小部分的有害和/或有毒的物质,如来自不完全燃烧的一氧化碳(co),来自未燃烧燃料的烃(hc),来自过高燃烧温度的氮氧化物(nox)和颗粒物质(主要是煤灰)。为了减轻释放到大气中的废气对环境的影响,需要消除或减少这些不希望的组分的量,优选通过不产生其他有害或有毒物质的方法。最难以从车辆废气中除去的组分之一是nox,其包括一氮氧化物(no)、二氮氧化物(no2)和一氧化二氮(n2o)。将例如由柴油机产生的贫燃废气中的nox还原为n2特别成问题,因为废气中含有充足的氧气来促进氧化反应,而不是还原反应。然而,通过通常被称为选择性催化还原(scr)的方法,柴油机废气中的nox可以被还原。scr方法涉及在催化剂的存在下与还原剂的帮助下nox转化成单质氮(n2)和水。在scr方法中,将气态还原剂如氨添加到废气流中,然后使废气与scr催化剂接触。还原剂被吸收到催化剂上,当气体穿过或经过催化基底时发生nox还原反应。使用氨的化学计量的scr反应化学方程式为:4no+4nh3+3o2→4n2+6h2o2no2+4nh3+3o2→3n2+6h2ono+no2+2nh3→2n2+3h2o已知的scr催化剂包括沸石以及其他分子筛。分子筛是具有明确结构的微孔结晶固体,在其骨架内通常含有硅、铝和氧,并且在其孔内还含有阳离子。分子筛的定义特征是由分子四面体单元以规则或重复的方式互连以形成骨架,从而形成的晶体或赝晶体结构。独特的沸石骨架通常由国际沸石协会(iza)结构委员会指定的三字母代码来识别。作为已知的scr催化剂的分子筛骨架的例子包括骨架类型代码cha(菱沸石)、bea(β)和mor(丝光沸石)。一些分子筛具有由一系列互连单元构成的三维分子骨架。这些分子筛的单元通常具有几立方纳米数量级的体积,和直径几埃数量级的单元开口(也称为“孔“或“孔隙”)。单元可由其孔的环尺寸来定义,其中例如术语“8环”是指由8个四面体配位的硅(或铝)原子和8个氧原子组建而成的闭环。在某些沸石中,单元孔在骨架内对齐,以形成一条或多条眼神贯穿骨架的通道,从而创建一种机构,以根据通道的相对尺寸和分子或离子的种类,限制不同的分子或离子种类进入或通过分子筛。分子筛的尺寸和形状部分地影响了其催化活性,因为分子筛对反应物具有空间影响,控制了对反应物及产物的接触。例如,小分子如nox可以进入或离开单元,和/或可以通过小孔分子筛(即具有最大环尺寸为8个四面体原子的骨架的那些)的通道扩散,然而大分子如长链烃则不能。此外,分子筛的部分或全部脱水可以得到与分子大小的通道交错的晶体结构。已经发现,具有小孔骨架即含有最大环尺寸8的沸石在scr应用中特别有用。小孔沸石包括具有如下晶体结构类型的那些:cha、lev、eri和aei(由国际沸石协会定义)。具有cha骨架的分子筛的具体的铝硅酸盐和硅铝磷酸盐实例包括sapo-34、aipo-34、ssz-13和ssz-62。沸石是具有互连的氧化铝和二氧化硅的晶体骨架的铝硅酸盐,特别是通过共享氧原子交联的氧化铝和二氧化硅,因此可以由其二氧化硅与氧化铝之比(sar)来表征。一般地,较高的sar与提高的水热稳定性有关。来自于移动贫燃发动机如柴油机的废气的温度往往在500-650℃或更高。废气通常还含有水蒸气。因此,在设计scr催化剂时水热稳定性是重要的考虑因素。沸石本身经常具有催化特性,但其催化性能在某些环境中可以由阳离子交换来提高,其中存在于表面上或骨架内的部分离子种类被过渡金属阳离子如cu2+替换。也就是说,通过将一种或多种过渡金属阳离子如铜或铁松散地保持到分子筛的骨架,可以促进沸石的scr性能。对于过渡金属交换的scr催化剂,期望在低操作温度具有高催化活性。在低于400℃的操作温度,较高的金属负载量得到较高的催化活性。可实现的金属负载量往往取决于分子筛中的交换位的数量。一般地,具有低sar的分子筛允许最高的金属负载量,因而在对较高催化活性的需求与由较高的sar值实现的高水热稳定性之间产生了矛盾。此外,高铜负载的催化剂在高温(例如>450℃)表现不佳。例如,负载有大量铜(即铜铝原子比>0.25)的具有cha骨架的铝硅酸盐在高于450℃的温度会导致显著的nh3氧化,从而导致n2选择性低。这一缺点在过滤器再生条件下尤为严重,过滤器再生条件包括将催化剂暴露在650℃以上的温度。在设计用于移动应用的scr催化剂时另一个重要的考虑因素是催化剂的性能一致性。例如,期望新鲜催化剂达到与老化后的相同催化剂类似的nox转换率水平。因此,仍然需要提供比现有的scr材料性能更高的scr催化剂。发明概述申请人发现,高浓度的铈可以结合到某种金属促进的低sar沸石,以提高材料的水热稳定性、低温催化性能和/或催化剂的新鲜与老化状态之间的催化性能一致性。例如,本发明的某些实施方案实现了令人惊奇的发现,将高浓度的ce添加到充分配制金属促进的低sar铝硅酸盐,与不含ce的、类似金属促进的低sar铝硅酸盐相比,提高了催化剂的水热稳定性。另一令人惊奇的事实是,当将类似量的ce添加到具有较高sar和较高促进金属浓度的类似铝硅酸盐,或者相同骨架类型的硅铝磷酸盐时,未产生提高的性能。因此,本发明的一方面是一种催化剂组合物,其包含(a)具有小孔骨架,优选为cha,并且二氧化硅与氧化铝摩尔比(sar)为约10至约30的沸石材料;(b)基于沸石总重量计约1.5至约5wt%的交换的非铝过渡金属;和(c)基于沸石总重量计至少约1.35wt%的铈,其中所述铈以选自交换的铈离子、单体二氧化铈、低聚二氧化铈及其组合的形式存在,条件是所述低聚二氧化铈的粒度小于5μm。本发明的另一方面提供了一种用于处理nox的方法,其包括在约200至约550℃的温度,使由贫燃发动机产生的废气与根据本发明的催化剂接触必要的时间,以使nox转换率达到至少约70%。附图说明图1是柱状图,显示了本发明的多种催化剂还有其他催化剂材料的对比例的nox转换率数据。发明优选实施方案详述在优选实施方案中,本发明涉及一种用于改进环境空气质量的催化剂,特别是用于改进由柴油机或其他贫燃发动机产生的废气排放的催化剂。通过在宽泛的操作温度范围内减少贫燃废气中的nox和/或nh3滑逸(slip)浓度,来改进废气排放。有用的催化剂是在氧化环境中选择性还原nox和/或氧化氨的那些(即scr催化剂和/或amox催化剂)。优选的催化剂包括金属促进的小孔沸石,其具有小于约30的sar,并且含有基于沸石总重量计至少约1.35wt%的铈,其中铈以选自交换的铈离子、单体二氧化铈、低聚二氧化铈及其混合物的形式存在,条件是所述低聚二氧化铈的粒度小于5μm。本发明的沸石是具有晶体或赝晶体结构的铝硅酸盐。沸石可能包括非铝的骨架金属,优选为过渡金属(也称为金属取代的铝硅酸盐)。正如本文使用的,对于沸石而言,术语“金属取代的”是指一个或多个铝或硅骨架原子被取代金属替换的骨架。相反地,术语“金属交换的”是指具有非骨架金属离子的沸石。适用于取代的金属的例子包括铜和铁。合适的沸石是小孔沸石,优选具有选自如下骨架类型代码的那些:aco、aei、aen、afn、aft、afx、ana、apc、apd、att、cdo、cha、ddr、dft、eab、edi、epi,eri、gis、goo、ihw、ite、itw、lev、kfi、mer、mon、nsi、owe、pau、phi、rho、rth、sat、sav、siv、tho、tsc、uei、ufi、vni、yug和zon。将会理解的是,具有特定骨架类型代码的沸石包括由骨架类型代码定义的所有同型骨架材料。表1列出了小孔骨架类型代码和对应的在本发明中有用的同型材料。表1:优选的小孔分子筛结构沸石chaaipo-34ssz-13lev插晶菱沸石nu-3lz-132zk-20eri毛沸石zsm-34lindet型ddrdeca-dodecasil3rσ-1kfizk-518-冠-6[zn-ga-as-o]-kfieabtma-epauecr-18mer麦钾沸石aeissz-39goo古柱沸石yug汤河原沸石gisp1vnivpi-9沸石类型材料例如天然存在的(即矿物)菱沸石与相同骨架类型代码内的同型之间的差异不是任意的,而是反映了材料之间的性质差异,这种差异又可能造成本发明方法中的活性差异。例如,天然存在的菱沸石具有比铝硅酸盐同型如ssz-13低的二氧化硅与氧化铝之比,天然存在的菱沸石具有比铝硅酸盐同型如ssz-13低的酸度,并且本发明方法中的材料活性相对较低。本发明使用的沸石包括天然和合成沸石,但是优选合成沸石,原因在于合成沸石可以具有更均匀的二氧化硅与氧化铝之比(sar)、微晶尺寸、微晶形态,并且不含杂质(例如碱土金属)。优选的沸石具有合成的cha结构。具有对本发明有用的cha结构的具体沸石包括但不限于,ssz-13、ssz-62、lz-218、linded、linder、phi和zk-14,优选为ssz-13。在某些实施方案中,沸石具有无磷cha晶体结构,即在其骨架内不含有可评估量的磷。正如本文使用的,术语“无磷cha晶体结构”是指这样的骨架,其不含有作为规则重复地单元的磷或者不含有能够影响材料基本的物理和/或化学性质的量的磷,特别是相对于在宽泛的温度范围内选择性地还原nox的材料能力。因此,无磷cha晶体结构可以包括含有最小量的磷的晶体结构。应用于本发明的沸石可以包括经过处理以提高水热稳定性的那些。提高水热稳定性的常规方法包括:(i)通过汽蒸脱铝,使用酸或络合剂(例如edta——乙二胺四乙酸)进行酸萃取;用酸或络合剂进行处理;用sicl4的气态流进行处理(在沸石骨架内用si替换al);和(ii)离子交换——采用多价阳离子如镧(la)。优选的沸石具有少于约30的二氧化硅与氧化铝摩尔比(sar),更优选为约5至约30,例如约10至约25,约14至约20和约15-约17。沸石的二氧化硅与氧化铝之比可由常规分析来确定。该比用来尽可能接近地代表沸石晶体的刚性原子骨架中的比,并且排除粘合剂中或者通道内的阳离子或其他形式的硅或铝。由于当与粘合剂(尤其是铝粘合剂)合并之后难以直接测量沸石的二氧化硅与氧化铝之比,这些二氧化硅与氧化铝之比以沸石本身的sar的形式表示,即在沸石与其他催化组分合并之前。在优选实施方案中,催化剂组合物包含平均晶体尺寸大于约0.5μm的分子筛晶体,优选为约0.5至约15μm,例如约0.5至约5μm,约0.7至约5μm,约1至约5μm,约1.5至约5.0μm,约1.5至约4.0μm,约2至约5μm,或约1至约10μm。催化剂组合物中的晶体可以是单个晶体、晶体的聚集体或两者的组合,只要晶体的聚集体的平均粒度小于约15μm,优选小于约10μm,更优选小于约5μm即可。聚集体的平均粒度的下限是组合物的平均单个晶体尺寸。晶体尺寸(本文也称为晶体直径)是晶体一个面的一个边的长度。例如,菱沸石晶体的形态为菱形(但大致为立方体)面,其中该面的各边长度大致相等。可以使用显微镜法如sem及tem进行晶体尺寸的直接测量。例如,通过sem测量包括在高放大倍率(通常为1000×至10,000×)检查材料的形态。sem方法可以通过在合适的载片装置上分配沸石粉末的代表性部分而进行,使得单个颗粒合理地均匀地分散在1000×至10,000×的放大倍率视野中。从该粒子群(population),对随机的单个晶体的统计学显著样本(例如50-200)进行检查,测量并记录与直边水平线平行的单个晶体的最长尺寸。(明显大多晶体聚集体的颗粒不应该包括在测量中。)基于这些测量,计算样品晶体尺寸的算术平均值。晶体聚集体的粒度可以以类似的方式来确定,除了测量聚集体最长边的长度而不是测量单个晶体的一个面的边。也其他技术用于确定平均粒度,如激光衍射和散射。正如本文使用的,涉及晶体尺寸或粒度的术语“平均”旨在表示粒子群中的统计学显著样本的算术平均值。例如,包含平均晶体尺寸为约0.5至约5.0μm的分子筛晶体的催化剂是具有分子筛晶体的粒子群的催化剂,其中该粒子群(例如50个晶体)的统计学显著样本将产生约0.5值约5.0μm的算术平均值。除平均晶体尺寸之外,催化剂组合物优选大部分晶体尺寸大于约0.5μm,优选约0.5至约15μm,例如约0.5至约5μm,约0.7至约5μm,约1至约5μm,约1.5至约5.0μm,约1.5至约4.0μm,约2至约5μm,或约1至约10μm。优选地,晶体尺寸样本的第一和第三四分值大于约0.5μm,优选约0.5至约15μm,例如约0.5至约5μm,约0.7至约5μm,约1至约5μm,约1.5至约5.0μm,约1.5至约4.0μm,约2至约5μm,或约1μm至约10μm。正如本文使用的,术语“第一四分值“是指四分之一的元素位于其下的值。例如,当40个晶体的尺寸以从小到大的顺序排列时,40个晶体尺寸样本的第一四分值是第10个晶体的尺寸。类似地,术语“第三四分值”表示四分之三的元素位于其下的值。大晶体菱沸石如同型ssz-13可以通过已知的方法合成,方法例如wo2010/043981(本文引入以供参考)和wo2010/074040(本文引入以供参考)中描述的方法。在某些实施方案中,小孔分子筛包括,基本上组成为,或者组成为选自abc-6、aei/cha、aei/sav、aen/uei、afs/bph、bec/isv、β、八面沸石、ite/rth、kfi/sav、铍硅钠石(lovdarite)、蒙特索马石(montesommaite)、mtt/ton、五硅环沸石(pentasil)、sbs/sbt、ssf/stf、ssz-33和zsm-48的无序骨架。在优选实施方案中,小孔分子筛中的一种或多种可以包括选自sapo-34、aipo-34、sapo-47、zyt-6、cal-1、sapo-40、ssz-62或ssz-13的cha骨架类型代码,和/或选自aipo-18、sapo-18、siz-8或ssz-39的aei骨架类型代码。在一个实施方案中,混合相组合物是aei/cha混合相组合物。分子筛中的各骨架类型值比没有特别限制。例如,aei/cha之比可以为约5/95至约95/5,优选约60/40至40/60。在一个示例性实施方案中,aei/cha之比可以为约5/95至约40/60。优选地,除铈之外,催化剂组合物还包含至少一种非骨架金属以提高材料的催化性能和/或热稳定性。正如本文使用的,“非骨架金属”是驻留在分子筛内和/或分子筛表面的至少一部分上的金属,不包括铝,且不包括构成分子筛骨架的原子。非骨架金属可以通过任何已知技术如离子交换、浸渍、同晶取代等添加到分子筛。非骨架金属可以是催化剂工业中用来形成金属交换的分子筛的任何公认的催化活性金属。在一个实施方案中,至少一种非骨架金属与分子筛联合使用以提高催化剂性能。优选的非骨架金属选自铜、镍、锌、铁、锡、钨、钼、钴、铋、钛、锆、锑、锰、铬、钒、铌、钌、铑、钯、金、银、铟、铂、铱、铼及其混合物。更优选的非骨架金属包括选自铬、锰、铁、钴、镍和铜及其混合物的那些。优选地,非骨架金属中的至少一种是铜。其他优选的非骨架金属包括铁和铈,特别是与铜结合。对于铝硅酸盐具有cha骨架的实施方案,优选的助催化剂是铜。在某些实施方案中,助催化剂金属负载量是基于分子筛总重量计约0.1至约10wt%,例如约0.5wt%至约5wt%,约0.5至约1wt%,或约2至约5wt%。在某些实施方案中,助催化剂金属(m)(优选铜),在铝硅酸盐沸石中的存在量使m:al原子比为约0.17至约0.24,优选为约0.22至约0.24,特别是当铝硅酸盐沸石的sar为约15至约20时。在某些包含交换铜的实施方案中,铜的存在量为约80至约120g/ft3沸石,包括例如含有约86至约94g/ft3,或约92至约94g/ft3。传输金属的类型和浓度可以根据分子筛主体和应用而改变。在一个实例中,通过将分子筛混入至含有催化活性金属的可溶性前体的溶液中来产生金属交换的分子筛。可以调整溶液的ph值以诱导催化活性阳离子沉淀到分子筛结构上或分子筛结构内。例如,在优选实施方案中,将菱沸石沉浸在含有硝酸铜的溶液中至充足的时间,以便通过离子交换使催化活性铜阳离子结合到分子筛结构。未交换的铜离子沉淀出来。根据应用,部分未交换的离子可以作为游离铜保留在分子筛材料中。然后可以清洗,干燥和锻烧金属取代的分子筛。当铁或铜用作金属阳离子时,催化材料的金属重量含量优选占分子筛材料的约0.1至约15wt%,更优选为约1至约10wt%,甚至更优选为约1至约5wt%。通常,将催化金属阳离子离子交换到分子筛内或分子筛上在室温或至多约80℃的温度约7的ph值进行约1至24小时。产生的催化分子筛材料优选在约100至120℃彻夜烘干并在至少约550℃的温度锻烧。优选地,基底中包括足量分子筛以还原流过基底的废气流中所含的nox。在某些实施方案中,至少一部分基底可以还包含氧化催化剂如铂族金属(例如铂),以氧化废气流中的氨,或者执行其他功能例如将co转换成co2。本发明的金属助催化的沸石催化剂包含相对大量的ce,并且具有惊人的好性能。特别地,sar小于30、优选为约15至约20,由金属优选铜并且优选以约0.17至约0.24的铜:铝比助催化,还具有基于沸石总重量计高于1.35wt%、优选为1.35至13.5wt%的ce浓度的沸石(优选cha铝硅酸盐),与结构类似的催化剂例如具有较高sar的cha沸石、或具有cha的硅铝磷酸盐沸石,特别是助催化剂金属负载量较高的那些相比,更为耐用。优选地,催化材料中的铈浓度基于沸石总重量计以至少约1.35wt%的浓度存在。优选浓度的例子包括基于沸石总重量计,约2.5wt%以上,约5wt%以上,约8wt%以上,约10wt%以上,约1.35至约13.5wt%,约2.7至约13.5wt%,约2.7至约8.1wt%,约2至约4wt%,约2至约9.5wt%,和约5至约9.5wt%。对于大部分这些范围,催化性能的改进直接与催化剂中ce浓度有关。对于sar为约10至约25,约20至约25,约15至约20,或约16至约18的具有cha骨架的铜助催化的铝硅酸盐如ssz-13来说,这些范围是特别优选的,并且对于铜以约0.17至约0.24的铜与铝之比存在的实施方案则更优选。在某些实施方案中,催化剂材料中的铈浓度为约50至约550g/ft3。ce的其他范围包括:100g/ft3以上,200g/ft3以上,300g/ft3以上,400g/ft3以上,500g/ft3以上,约75至约350g/ft3,约100至约300g/ft3,约100至约250g/ft3。在某些实施方案中,ce的浓度超过金属助催化的沸石上可用于交换的理论最大量。因此,在一些实施方案中,ce以多于一种形式存在,例如ce离子、单体二氧化铈、低聚二氧化铈及其组合,条件是所述低聚二氧化铈的平均晶体尺寸小于5μm,例如小于1μm,约10nm至约1μm,约100nm至约1μm,约500nm至约1μm,约10至约500nm,约100至约500nm,和约10至约100nm。正如本文使用的,术语“单体二氧化铈”是指作为自由地驻留在沸石上和/或沸石中或者弱结合到沸石的单个分子或结构部分的ceo2。正如本文使用的,术语“低聚二氧化铈”是指自由驻留在沸石上和/或沸石中或者弱结合到沸石的纳米晶体ceo2。对于催化剂是活化涂层(washcoat)组合物的一部分的实施方案,活化涂层可以进一步包括含有ce或二氧化铈的粘合剂。对于这种实施方案,粘合剂中含有ce的颗粒显著大于催化剂中含有ce的颗粒。铈优选结合到含有助催化金属的沸石中。例如,在优选实施方案中,具有cha骨架的铝硅酸盐在被被ce浸渍之前先进行铜交换过程。示例性的ce浸渍方法包括通过常规的初始润湿技术将硝酸铈添加到铜助催化的沸石。用于本发明的沸石催化剂可以为活化涂层的形式,优选为适用于涂覆基底的活化涂层,基底例如金属或陶瓷流通式整料基底或过滤基底,包括例如壁流式过滤器或烧结金属或部分过滤器。因此,本发明的另一方面是包含本文描述的催化剂组分的活化涂层。除催化剂组分之外,活化涂层组合物可进一步包含选自氧化铝、二氧化硅、(非沸石)二氧化硅-氧化铝、天然存在的粘土、tio2、zro2和sno2的粘合剂。用于移动应用的优选基底是具有所谓蜂窝状几何结构的整料,其包括多相邻的平行通道,各通道通常具有正方形的横截面。蜂窝状形状提供了大催化表面,并具有最小的整体尺寸和压降。沸石催化剂可以沉积到流通式整料基底(例如具有轴向延伸过整个部分的许多小的平行通道的蜂窝状整料催化剂载体结构)或过滤器整料基底如壁流式过滤器,等等。在另一实施方案中,沸石催化剂形成为挤出型催化剂。优选地,沸石催化剂以充足的量涂覆在基底上,以还原过滤基底的废气流中所含的nox。在某些实施方案中,至少一部分基底可以含有铂族金属如铂(pt),以氧化废气流中的氨。用于本发明的沸石可以直接合成到基底上。根据本发明的沸石催化剂可以形成为挤出型流通式催化剂。本文描述的催化沸石可以促进还原剂(优选氨)与氮氧化物的反应,以选择性形成单质氮(n2)和水(h2o),而非氧和氨的竞争反应。在一个实施方案中,催化剂可以经配制以有利于用氨(例如scr催化剂)还原氮氧化物。在另一实施方案中,催化剂可以经配制以有利于氧(即氨氧化(amox)催化剂)氧化氨。在又一实施方案中,scr催化剂和amox催化剂串联使用,其中两种催化剂均包括本文描述的含有金属的沸石,其中scr催化剂在amox催化剂的上游。在某些实施方案中,amox催化剂作为顶层位于氧化性底层上,其中该底层包含铂族金属(pgm)催化剂或非pgm催化剂。优选地,amox催化剂位于高表面积载体上,包括但不限于氧化铝。在某些实施方案中,amox催化剂施用于基底,优选经设计以提供大的接触面积以及最小的背压的基底,例如流通式金属或堇青石蜂窝体。例如,优选的基底具有约25至约300单元每平方英尺(cpsi),以确保低背压。实现低背压对于使amox催化剂对低压egr性能的影响最小化尤为重要。amox催化剂可以作为活化涂层施用到基底,优选以实现约0.3至2.3g/in3的负载量。为提供进一步的nox转换,基底前部可以只涂覆scr涂层,后部涂覆scr和nh3氧化催化剂,其可进一步包含氧化铝载体上的pt或pt/pd。用于scr方法的还原剂(也称为还原试剂)概括地指促进废气中nox还原的任何化合物。本发明有用的还原剂的例子包括氨、肼或任何合适的氨前体,例如尿素((nh2)2co)、碳酸铵、氨基甲酸铵、碳酸氢铵或甲酸铵和烃如柴油燃料,等等。特别优选的还原剂是氮基的,特别优选氨。在另一实施方案中,氮基还原剂(尤其是nh3)的全部或至少部分,可以由位于双功能催化过滤器上游的nox吸附剂催化剂(nac)、贫nox捕集阱(lnt)或nox储存/还原催化剂(nsrc)供应。本发明中nac的功能之一是为下游scr反应提供nh3源。因此,nac在系统中的设置方式类似于喷射器的方式,即双功能催化过滤器的上游,并且优选在nac与过滤器之间没有介入的scr或其他催化成分。本发明中有用的nac组分包括碱性材料(例如碱金属、碱土金属或稀土金属,包括碱金属氧化物、碱土金属氧化物及其组合)和贵金属(例如铂)以及任选的还原催化剂组分(例如铑)的催化剂组合。nac中有用的具体类型的碱性材料包括氧化铯、氧化钾、氧化镁、氧化钠、氧化钙、氧化锶、氧化钡及其组合。贵金属优选以约10至约200g/ft3存在,例如20至60g/ft3。替代地,催化剂的贵金属特征在于平均浓度可以为约40至约100g/ft3。在某些条件下,在周期性富再生事件期间,可以在nox吸附剂催化剂上产生nh3。nox吸附剂下游的scr催化剂可以提高整个体系的nox还原效率。在联合的体系中,scr催化剂能够在富再生事件期间储存nac催化剂释放的nh3,并在正常的贫操作条件期间利用储存的nh3选择性还原一些或全部滑逸过nac催化剂的nox。本发明的另一方面提供了一种用于还原气体中的nox化合物或氧化气体中的nh3的方法,其包括:使气体与本文描述的用于nox催化还原的催化剂组合物接触充分的时间,以减少气体中的nox化合物水平。在一个实施方案中,氮氧化物在至少100℃的温度被还原剂还原。在另一实施方案中,氮氧化物在约150至750℃的温度被还原剂还原。在具体的实施方案中,温度范围为175至550℃。在另一实施方案中,温度范围为175至400℃。在又一实施方案中,温度范围为450至900℃,优选为500至750℃,500至650℃,450至550℃,或650至850℃。采用大于450℃的温度的实施方案对处理来自于重型和轻型柴油机的废气特有有用,该重型和轻型柴油机配有包括(任选催化的)柴油颗粒过滤器的排气系统,该柴油颗粒过滤器例如通过将烃注入过滤器上游的排气系统而主动地再生,其中用于本发明的沸石催化剂位于过滤器的下游。在其他实施方案中,沸石scr催化剂结合到过滤器基底上。本发明的方法可以包括一个或多个以下步骤:(a)累积和/或燃烧与催化过滤器入口接触的烟灰;(b)在接触催化过滤器之前,将含氮还原剂引入废气流,优选没有涉及nox和还原剂处理的中间催化步骤;(c)在nox吸附剂催化剂上生成nh3,优选将该nh3用作下游scr反应的还原剂;(d)使废气流与doc接触,以将烃基可溶性有机馏分(sof)和/或一氧化碳氧化为co2,和/或将no氧化为no2,其又可以用来氧化颗粒过滤器中的颗粒物质;和/或减少废气中的颗粒物质(pm);(e)在还原剂存在下使废气与一个或多个流通式scr催化剂装置接触,以减少废气中的nox浓度;和(f)在将废气排放至大气中之前,或者在废气进入/重新进入发动机之前将废气送过再循环回路之前,使废气与amox催化剂(优选位于scr催化剂下游)接触,以氧化大部分(如果不是全部的)氨。该方法可以对源自燃烧过程的气体进行,例如源自内燃机(移动式或固定式)、燃气轮机和燃煤或燃油发电厂。该方法还可以用于处理来自工业过程的气体,如炼制、来自于炼油厂加热器和锅炉、熔炉、化学加工工业、炼焦炉、城市垃圾厂和焚烧炉等。在具体的实施方案中,该方法用于处理来自车辆贫燃内燃机的废气,如柴油机、贫燃汽油机或由液态石油气或天然气供能的发动机。根据另一方面,本发明提供了一种用于车辆贫燃内燃机的排气系统,该系统包括用于运送流动废气的管道,含氮还原剂源,本文描述的沸石催化剂。该系统可以包括在使用中用于控制计量装置的装置,从而仅当确定沸石催化剂能够例如在100℃以上、150℃以上或175℃以上,以等于或高于所需效率催化nox还原时,才将含氮还原剂按计量加入流动废气。通过控制装置确定可以由一个或多个发动机条件的合适的传感器输入来辅助,该发动机条件选自废气温度、催化床温度、油门位置、系统中废气的质量流量、歧管真空度、点火时机、发动机速度、废气λ值、注入发动机的燃料量、废气再循环(egr)阀的位置和由此egr的量以及增压。在具体的实施方案中,根据废气中氮氧化物的量来控制计量,氮氧化物的量例如使用存储在控制装置中的预关联的查询表或图来直接(用合适的nox传感器)或间接确定,该查询表或图将任一个或多个指示发动机条件的上述输入与废气的预计nox含量相关联。含氮还原剂的计量可以经布置以使得60%至200%理论上的的氨存在于进入scr催化剂的废气中,按1:1nh3/no和4:3nh3/no2计算。控制装置可以包括预编程处理器如电子控制单元(ecu)。在另一实施方案中,用于将废气中的一氮氧化物氧化为二氧化氧的氧化催化剂可以位于将含氮还原剂计量加入废气中的位置的上游。在一个实施方案中,氧化催化剂经调整以使进入scr沸石催化剂的气流例如在氧化催化剂入口处在250℃至450℃的废气温度具有约4:1至约1:3的no与no2的体积比。氧化催化剂可以包含涂覆在流通式整料基底上的至少一种铂族金属(或它们的某种组合)如铂、钯或铑。在一个实施方案中,该至少一种铂族金属是铂、钯或铂和钯的组合。铂族金属可以负载在高表面积的活化涂层组分上,如氧化铝、沸石如铝硅酸盐沸石、二氧化硅,非沸石二氧化硅氧化铝、二氧化铈、氧化锆,二氧化钛或同时含有二氧化铈和氧化锆的混合氧化物或复合氧化物。在另一实施方案中,合适的过滤器基底位于氧化催化剂与沸石催化剂之间。过滤器基底可以选自上述那些中的任一种,例如壁流式过滤器。当例如用上述种类的氧化催化剂催化过滤器时,则计量加入含氮还原剂的位置优选位于过滤器与沸石催化剂之间。替代地,如果过滤器未被催化,用于计量加入含氮还原剂的装置可以位于氧化催化剂与过滤器之间。在另一实施方案中,用于本发明的沸石催化剂涂覆在位于氧化催化剂下游的过滤器上。在过滤器包括用于本发明的沸石催化剂的情况下,计量加入含氮还原剂的位置优选位于氧化催化剂与过滤器之间。在另一方面,提供了一种车辆贫燃发动机,其包括根据本发明的排气系统。车辆贫燃内燃机可以是柴油机、贫燃汽油机或由液态石油气或天然气供能的发动机。实施例实施例:采用初始润湿技术用硝酸铈浸渍具有sar为17(沸石a)的cha骨架(同型ssz-13)并且包含2.4wt%交换的铜(基于沸石总重量计)的铝硅酸盐中,然后将该铝硅酸盐涂覆在基底上,以产生具有75g/ft3的ce(基于总沸石重量计1.35wt%的ce)的催化剂样品。重复相同的技术以产生具有96g/ft3的ce、119g/ft3的ce、188g/ft3的ce和285g/ft3的ce的催化剂样本。将这些样品的每个在800℃在10%的h2o中进行5小时水热老化。然后分析这些样品,以确定它们在200℃和在500℃的nh3scr过程中nox转化的能力,其中调整nh3scr过程以允许20ppm的氨滑逸。该分析的结果提供于图1。对比例:分析没有ce浸渍的沸石a,以确定它在200℃和在500℃的nh3scr过程中nox转化的能力,其中调整nh3scr过程以允许20ppm的氨滑逸。该分析的结果提供于图1。分析具有sar为25的cha骨架(同型ssz-13)并且包含3.3wt%交换的铜(没有ce浸渍)的铝硅酸盐,以确定它在200℃和在500℃的nh3scr过程中nox转化的能力,其中调整nh3scr过程以允许20ppm的氨滑逸。该分析的结果提供于图1。这些测试的结果表明低sar的、铜助催化的并且浸渍有ce的沸石具有优异的水热稳定性。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1