合成环氧环己烷用金属-有机配合物固载磷钨酸催化剂的制作方法

文档序号:22759812发布日期:2020-10-31 09:58阅读:178来源:国知局
合成环氧环己烷用金属-有机配合物固载磷钨酸催化剂的制作方法

本申请属于环氧化产物化学合成制备技术领域,具体涉及一种利用环己烯多相催化氧化合成环氧环己烷的金属-有机配合物固载磷钨酸催化剂专利申请。



背景技术:

烯烃的环氧化产物(如环氧乙烷、环氧丙烷、环氧环己烷等)是有机合成的一类重要中间体,广泛应用于石油化工、精细化工、有机合成、制药及电子工业,在国民经济中有着极其重要的地位。尤其是环氧环己烷中烷基链团具有的六元环状结构,其开环聚合后,天然具备有良好空间位阻,利用其所制备的聚氨酯、聚酯、聚醚以及其他共聚材料,具有更优良的加工性能和应用功能,因此被誉为继环氧乙烷、环氧丙烷后第三大潜在有机烷基环氧化物,具有巨大的潜在应用价值和社会经济效益。

烯烃的环氧化合成过程中,催化剂是必不可少的反应原料之一,也是决定反应效率的重要决定性因素。现有催化剂中,杂多酸及双氧水作为绿色氧化剂,虽然由于其良好环保性,得到了较多研究和重视。但催化剂的催化效果及催化剂的循环再利用也是工业催化中选择催化剂的重要决定因素之一。

现有技术中,瓜环(又称葫芦脲cb[n]),是一类高度对称的大环化合物,有着疏水性的空腔和亲水性的端口,可经由疏水基相互作用包结有机分子;而两端大小相等、极性较强的羰基氧可与季铵盐阳离子如溴化十六烷基吡啶(cpb)、gemini型双季铵盐表面活性剂紫精系列衍生物(dcmv2+)健合,通过离子-偶极相互作用、氢键作用等弱相互作用发生自组装,在金属离子的诱导下形成具有空间网络结构的两亲性的配合物。已有研究认为,该配合物可以作为一种分子开关或选择器,在吸附、分离、药物缓释、催化等领域发挥重要作用。基于此类物质功能特殊性,如能开发一种具有较好催化效果、且具有较好再循环利用的催化剂,对于改进环氧环己烷制备技术显然具有重要技术价值。



技术实现要素:

结合瓜环类化合物的特殊性,通过利用阴阳离子间的静电引力和氢键等作用接枝杂多酸阴离子,本申请目的在于提供一种催化活性高、对环氧环己烷的选择性好、又便于生产控制的具有多孔状的两亲性杂多酸催化剂,从而为环己烯多相催化氧化合成环氧环己烷制备技术的改进奠定一定技术基础。

本申请所采取的技术方案详述如下。

合成环氧环己烷用金属-有机配合物固载磷钨酸催化剂,通过在自组装合成金属-有机配合物(cb[6]—cpb(或dcmv2+)—mn+)过程中引入过氧磷钨酸活性组分(pwa),通过一步合成法制得,记为:pwa@cb[6]—cpb(或dcmv2+)—mn+(即:pwa@cb[6]—cpb—mn+、pwa@cb[6]—dcmv2+—mn+);

所述金属离子mn+为cr3+、mn2+、fe2+、co2+、ni2+中一种或几种任意比例混合物;

以摩尔比计,pwa:cb[6]:cpb(或dcmv2+):mn+=1.0~6.0:1:1:1~6。

所述一步合成法,具体步骤为:

(1)将季铵盐表面活性剂配体(cpb(或dcmv2+)和金属离子(mn+)加入到瓜环cb[6]水溶液中,在10~60℃(优选35~50℃)下搅拌溶解;期间可采用2~12mol/l浓盐酸调整其溶解性,搅拌1~2h确保溶解充分;

以摩尔比计,季铵盐表面活性剂dcmv2+:cb[6]:mn+=1:1:1~6;优选比例为,1:1:2~4

所述季铵盐表面活性剂配体为单季铵盐溴化十六烷基吡啶(cpb)和/或紫精系列双季铵盐(dcmv2+);

所述紫精系列双季铵盐(dcmv2+)具体例如为:1,1-二辛基-4,4-联吡啶二溴化铵(dc8v2+)、1,1-二癸基-4,4-联吡啶二溴化铵(dc10v2+)、1,1-二(十二烷基)-4,4-联吡啶二溴化铵(dc12v2+)、1-十六烷基-1-十二烷基4,4-联吡啶二溴化铵(dc10,16v2+)、1,1-二(十六烷基)-4,4-联吡啶二溴化铵(dc16v2+)中任一种或几种任意比例混合物;

(2)将步骤(1)溶解体系加入到含有磷钨酸活性组分的溶液中,40~50℃继续搅拌2-8h(优选2~4h);

所述磷钨酸活性组分,为具有keggin结构的过氧磷钨酸,具体主要为磷钨比为1:4的过氧磷钨酸;

以摩尔比计,过氧磷钨酸:配合物=6~1:1,优选比例为4~2:1;

(3)过滤,乙醇洗涤,并于50-80℃烘干(一般干燥5~10h),即得催化剂成品。

所述金属-有机配合物固载磷钨酸催化剂在环氧环己烷制备中的应用。

利用所述金属-有机配合物固载磷钨酸催化剂的环氧环己烷制备方法,具体包括如下操作:

在乙腈溶剂中加入过氧化氢水溶液、催化剂和环戊烯,70~80℃拌反应4~6h;

具体用量比例例如为:40ml乙腈,35mmol、30%的h2o2,催化剂0.15g,环戊烯29.6mmol。

本申请所提供催化剂采用一步合成法制备获得,该催化剂在引入过氧磷钨酸的同时保持了金属-有机配合物cb[6]—dcmv2+—mn2+所特有的刚性和多孔结构,并且大大提高了磷钨酸的分散度;而通过将磷钨酸束缚在多孔孔笼中,改善了磷钨酸与载体骨架的作用,有效防止了活性组分的流失。初步验证效果表明,该催化剂的催化活性较高,对环己烯的转化率可达到75%(环己烯计),对环氧环己烷的选择性可达98%,表现出优良的催化性能。同时由于该催化剂制备工艺简单,加上利用该催化剂的制备环氧环己烷反应条件温和、便于生产控制、且该催化剂可重复利用,并且再生后仍然保持了较好催化性能,因此对于降低环氧环己烷生产成本、提高生产效率具有较为重要的技术意义。

附图说明

图1为实施例10所制备催化剂pwa@cb[6]—dc10,16v2+—ni2+的扫描电镜(sem),可以看出,催化剂的表面负载一层磷钨酸,且催化剂具有大小不一的多孔状;

图2为催化剂1~6号的催化效果;

图3为催化剂7~11号的催化效果;

图4为催化剂12~17号催化效果;

图5为催化剂18~23号催化效果;

图6为24号催化剂循环使用后催化效果。

具体实施方式

下面结合附图和实施例对本申请做进一步的解释说明。

实施例1

本申请中所提供的合成环氧环己烷用金属-有机配合物固载磷钨酸催化剂,通过在自组装合成金属-有机配合物(cb[6]—cpb(或dcmv2+)—mn+)过程中引入磷钨酸活性组分(pwa),通过一步合成法制得,记为pwa@cb[6]—cpb(或dcmv2+)—mn+

本实施例中,所采用金属元素m为金属镍离子,所采用有机配合物为溴化十六烷基吡啶季铵盐表面活性剂cpb;

以摩尔比计,pwa:cb[6]:cpb:ni2+=2:1:1:1。

具体制备步骤为:

(1)将季铵盐表面活性剂(cpb)配体和金属离子(ni2+)加入到瓜环cb[6]水溶液中,在40℃下搅拌溶解2h;若不溶解,期间可采用10mol/l浓盐酸调整其溶解性以确保溶解充分;

以摩尔比计,季铵盐表面活性剂cpb:cb[6]:金属离子ni2+(x)=1:1:x(x=1~6);

换算后,具体用量为:瓜环(cb[6])用量为0.8g;季铵盐表面活性剂配体溴代十六烷基吡啶cpb用量为0.2796g;金属离子ni2+(氯化镍)用量为0.16g。

(2)将步骤(1)溶解体系加入到物质的量2倍于配合物的含有磷钨酸活性组分的溶液中,40℃条件下需要持续搅拌至泡沫消失;

所述磷钨酸活性组分,为具有keggin结构的过氧磷钨酸,具体主要为磷钨摩尔比为1:4的过氧磷钨酸;

(3)采用抽滤方式滤除水分,将沉淀用蒸馏水和乙醇依次洗涤,再次抽滤,沉淀物质于烘箱内60℃干燥12h,即得催化剂成品编号为1#催化剂。

实施例2~6

实施例2~6所提供催化剂,其制备过程同实施例1,仅调整金属离子氯化镍质量分别为:0.32g,0.48g,0.64g,0.81g,0.96g(即,此时pwa:cb[6]:cpb:ni2+比值分别为:

实施例2,2:1:1:2;

实施例3,2:1:1:3;

实施例4,2:1:1:4;

实施例5,2:1:1:5;

实施例6,2:1:1:6。

将所制备催化剂,分别记为2#催化剂、3#催化剂、4#催化剂、5#催化剂、6#催化剂。

实施例7~11

实施例7~11所提供催化剂,其制备过程同实施例1,仅调整部分参数如下:

摩尔比计,cpb:cb[6]:金属离子mn+=1:1:4,调节过氧磷钨酸(pwa)的物质的量,pwa:cpb:cb[6]:金属离子ni2+的具体摩尔比分别为:

实施例7,6:1:1:4;

实施例8,4:1:1:4;

实施例9,3:1:1:4;

实施例10,2:1:1:4;

实施例11,1:1:1:4。

将所制备催化剂,分别记为7#催化剂、8#催化剂、9#催化剂、10#催化剂、11#催化剂。

实施例12~17

实施例12~17所提供催化剂,其制备过程同实施例1,仅调整金属离子种类,实验参数如下:

pwa:cpb:cb[6]:金属离子的具体摩尔比均为4:1:1:4;

实施例12中,金属离子m2+=cr2+

实施例13中,金属离子m2+=mn2+

实施例14中,金属离子m2+=fe2+

实施例15中,金属离子m2+=co2+

实施例16中,金属离子m2+=ni2+

实施例17中,金属离子m2+=cu2+

换算后,各物料用量为:瓜环(cb[6])用量为0.8g,季铵盐表面活性剂配体溴代十六烷基吡啶cpb用量为0.2796g;

金属离子分别采用氯化铬、氯化锰、氯化亚铁、氯化钴、氯化镍、硫酸铜来提供,具体用量分别为:氯化铬0.7752g(实施例12)、氯化锰0.4709g(实施例13)、氯化亚铁0.3687g(实施例14)、氯化钴0.6921g(实施例15)、硫酸铜0.7273g(实施例16)、氯化锌0.40g(实施例17)。

将所制备催化剂,分别记为12#催化剂、13#催化剂、14#催化剂、15#催化剂、16#催化剂、17#催化剂。

实施例18~22

实施例18~22所提供催化剂,其制备过程同实施例1,仅把单季铵盐表面活性剂(cpb)调整为gemini型双季铵盐表面活性剂(dcmv2+),金属离子为镍离子,步骤同实施例1,部分参数如下:

实施例18~23中,以摩尔比计,pwa:cb[6]:dcmv2+:ni2+=4:1:1:4,

换算后,各物料用量为:瓜环(cb[6])用量为0.8g;各实施例中双季铵盐表面活性剂配体dcmv2+用量分别为:1,1’-二辛基-4,4’-联吡啶二溴化铵(dc8v2+)0.3943g(实施例18)、1,1’-二癸基-4,4’-联吡啶二溴化铵(dc10v2+)0.4350g(实施例19)、1,1’-二(十二烷基)-4,4’-联吡啶二溴化铵(dc12v2+)0.4757g(实施例20)、1-十六烷基-1’-十二烷基4,4’-联吡啶二溴化铵(c10,16v2+)0.5164g(实施例21)、1,1’-二(十六烷基)-4,4’-联吡啶二溴化铵(dc16v2+)0.5572g(实施例22)。

将所制备催化剂,分别记为18#催化剂、19#催化剂、20#催化剂、21#催化剂、22#催化剂。

作为对照,以实施例21为例,参考如上制备方法,不采用金属离子,发明人制备了对照样品,记为23#催化剂(即,23号催化剂中,pwa:cb[6]:dc10,16v2+=4:1:1,不含金属离子)。

对所制备催化剂样品,随机抽取实施例10所制备催化剂pwa@cb[6]—dc10,16v2+—ni2+进行扫描电镜(sem)分析,结果如图1所示,可以看出,催化剂的表面负载一层磷钨酸,且催化剂具有大小不一的多孔状,这为保证其实际催化效果奠定了良好的结构基础。

进一步地,为确定催化剂回收后使用效果,发明人将实施例21所制备催化剂在环己烯催化环氧化反应完成后,采用离心分离方式进行了回收,并用乙醇进行了洗涤(洗涤三次)、干燥处理,并与其他实施例所制备催化剂相同条件下作为新的催化剂进行再次应用,将此回收后重新再利用催化剂记为24#催化剂。

检验例

将上述实施例所制备催化剂进行实际的环己烯催化环氧化反应,以对催化剂活性进行检测测定,具体反应过程简介如下。

环己烯催化环氧化反应,圆底烧瓶内,磁力搅拌方式,反应条件为:

75℃油浴方式,在40ml乙腈溶剂中加入含35mmolh2o2的30%过氧化氢水溶液,然后加入催化剂0.15g和环戊烯29.6mmol,搅拌反应5h。

反应完成后采用色谱-质谱联用仪鉴定各组分,并利用气相色谱分析方式测定环己烯转化率和环氧环己烷的选择性。

各实施例产品的具体反应结果汇总如下。

催化剂1~6号的催化效果如图2所示。分析可以看出(实施例1~6中,催化剂除金属镍离子组分外其他组分配比固定,即,pwa:cb[6]:cpb:ni2+(x)=2:1:1:x,改变x=1、2、3、4、5、6),随着金属镍离子含量的增加,磷钨酸催化剂催化环己烯环氧化的产率增加,当pwa:cb[6]:cpb:ni2+(x)=2:1:1:4时,环氧环己烷的产率最高(46.49%),继续增加过渡金属离子含量,环氧环己烷的产率和选择性都会下降。也因此,最优金属离子含量比(摩尔比计)pwa:cb[6]:cpb:ni2+(x)=2:1:1:4。

催化剂7~11号的催化效果如图3所示。分析可以看出(实施例7~11,催化剂除磷钨酸组分外其他组分配比固定,改变活性磷钨酸物质的量,其他组分比固定,pwa(y):cb[6]:cpb:ni2+=y:1:1:4,改变y=1、2、3、4、5):随着过氧磷钨酸含量的增加,磷钨酸催化剂催化环己烯环氧化的产率增加,当pwa:cb[6]:cpb:ni2+(x)=4:1:1:4,环氧环己烷的选择性和产率均达到最高(sel%=79.36,yield%=61.13),继续增加过氧磷钨酸含量,环氧环己烷的产率和选择性反而下降。最优过氧磷钨酸含量比(摩尔比计)pwa:cb[6]:cpb:ni2+=4:1:1:4。

催化剂12~17号催化效果如图4所示。分析可以看出(实施例12~17,催化剂组分摩尔比固定,pwa:cb[6]:cpb:mn+=4:1:1:4,改变金属离子种类mn+=cr2+、mn2+、fe2+、co2+、ni2+、cu2+):当mn+为ni2+时,环氧环己烷的产率最高(61.11%),分析认为造成这一差异的原因在于镍离子形成的磷钨酸催化剂晶型最好,比表面积及孔径比较大的缘故。

催化剂18~23号催化效果如图5所示。分析可以看出(实施例18~22,催化剂组分摩尔比固定,单季铵盐表面活性剂cpb调整为gemini型双季铵盐dcmv2+,dcmv2+分别为:dc8v2+、dc10v2+、dc12v2+、dc10,16v2+、dc16v2+;23号催化剂中,pwa:cb[6]:dc10,16v2+=4:1:1,不含金属离子,其他同实施例21):

双季铵盐的催化效率远高于单季铵盐的催化效率,且随着烷基链的增长,催化效果逐渐增大,当碳原子数增加到12时,由于季铵盐在极性溶剂中溶解性减弱,双季铵盐接枝的磷钨酸活性组分减少,故催化效果反而降低。综合而言,季铵盐为dc10,16v2+的催化剂催化效果最好(环氧环己烷产率为74.60%)。

实施例21回收的催化剂(即,24号催化剂)循环3次使用后催化效果如图6所示,可以看出,催化剂循环使用三次后,虽然催化产率稍微降低,但选择性基本不变,表明该催化剂具有较好的循环使用效率。

从以上实验数据可以看出,本发明将金属-有机配合物磷钨酸催化剂用于催化环己烯选择氧化制备环氧环己烷是一种有效的合成路线,催化剂活性高,对环己烯的转化率可达到77%,对环氧环己烷的选择性达到98%,催化性能优良,并且重复回收后仍然保持了较高活性,表现出较好的工业应用价值。

总体上,本申请通过采用一步合成法,在合成金属-有机配合物(cb[6]-dcxv2+-mn+)的过程中将具有催化氧化活性的过氧磷钨酸组分引入到配合物的孔道内,使得其具备了多孔结构、活性组分高度分散以及磷钨酸超高负载量等优点,用于环己烯催化环氧化反应时,可大幅提高环氧环己烷的选择性和收率,表现出较高的工业应用价值。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1