一种用于吸附有机气体的埃洛石基多孔炭复合材料及其制备方法

文档序号:24558442发布日期:2021-04-06 12:08阅读:196来源:国知局
一种用于吸附有机气体的埃洛石基多孔炭复合材料及其制备方法

技术领域:

本发明属于有机气体吸附领域,具体涉及一种用于吸附有机气体的埃洛石基多孔炭复合材料及其制备方法。



背景技术:

有机气体(vocs)是重要的大气污染物之一,主要来源于以煤、石油、天然气为燃料或原料的工业以及其他相关的化学工业。大多数vocs具有一定的刺激性和毒性,还会产生致癌、致畸、致突变的“三致”效应;同时,vocs也是形成细颗粒物(pm2.5)、臭氧(o3)等二次污染物的重要前体物,进而引发灰霾、光化学烟雾等大气环境问题,对环境安全和人类生存产生极大的危害。

vocs治理方法主要有吸附法、冷凝法、燃烧法、生物法和光催化降解法等。其中,吸附法由于工艺成熟,能耗低,去除效率高等特点,成为应用最广,最经济有效的vocs治理方法。吸附法应用的关键是吸附剂。多孔炭材料由于其孔结构发达、比表面积高、价格低廉,适用于吸附各种vocs。然而,多孔炭材料的热稳定性较差,在高温脱附时存在安全隐患,导致它的工业应用受到限制。

埃洛石是一种纳米管状的硅铝酸盐矿物,其结构单元层由一个硅氧四面体片和一个铝氧八面体片构成,并具有特殊的介孔内腔和良好的热稳定性;同时,埃洛石的储量丰富,价格低廉,被广泛用作吸附剂或吸附剂载体。然而,埃洛石由于其表面含有大量的羟基而呈亲水性,降低了其对vocs的亲和性。通过对埃洛石进行表面疏水化改性能够提升其对有机物的亲和性。中国专利(公布号:107163573a)采用硅烷偶联剂对埃洛石进行表面疏水化改性,制得一种埃洛石纳米管与聚苯胺复合材料;该复合材料对苯、甲苯和四氯化碳等有机物具有较好的吸附性能。然而,硅烷偶联剂容易发生自缩聚并可能堵塞埃洛石的介孔内腔,进而降低埃洛石的有机气体吸附容量。因此,急需一种既能保持埃洛石介孔内腔,又能提高其表面疏水性的改性材料。



技术实现要素:

本发明的目的在于克服多孔炭材料的热稳定性差,以及埃洛石对vocs的亲和性较差等缺点,提供一种用于吸附有机气体的埃洛石基多孔炭复合材料及其制备方法。

本发明的用于吸附有机气体的埃洛石基多孔炭复合材料的制备方法,其包括如下步骤:

1)将埃洛石置于管式炉中,在饱和水蒸气气氛下,500~1000℃煅烧1~4h,得到活化埃洛石;

2)将活化埃洛石与碱溶液按1g活化埃洛石:10~50ml碱溶液的比例混合,搅拌反应2~8h,然后固液分离,保留固体,得到选择性刻蚀的埃洛石;

3)将选择性刻蚀埃洛石与糠醇溶液按1g选择性刻蚀埃洛石:5~20ml糠醇溶液的比例混合并超声分散,然后抽真空,得到选择性刻蚀埃洛石与糠醇溶液的混悬液;

4)将步骤3)的混悬液置于管式炉中,在氮气气氛下,以5~10℃/min的速率升温,于600~900℃恒温2~8h,得到用于吸附有机气体的埃洛石基多孔炭复合材料。

优选,所述步骤2)中的碱溶液为浓度为0.5~3m的naoh或koh溶液。

优选,所述步骤3)中抽真空的时间为10~30min,并重复3~5次。

优选,所述步骤2)的搅拌反应是在300rpm下搅拌反应,所述的固液分离是4000rpm离心分离10min。

优选,所述步骤3)的超声分散是40khz下超声分散30min。

相对于现有技术,本发明具有如下优点和有益效果:

1)本发明通过高温水蒸气活化技术以及碱溶液选择性刻蚀技术,制得富含氧化铝的埃洛石基载体;然后充分利用氧化铝的固体酸性,及其对糠醇溶液的催化特性,通过抽真空使糠醇进入埃洛石基载体内腔中,并通过高温碳化作用,使多孔炭均匀地负载于埃洛石基载体的内腔和外表面。

2)由于埃洛石基载体的内腔和外表面均负载了一层多孔炭,其表面由亲水性转化为疏水性,提升了对vocs的亲和性;此外,由于埃洛石基载体具有良好的热稳定性,其与多孔炭复合后也显著提升了多孔炭的热稳定性。

3)本发明的埃洛石基多孔炭复合材料具有多级孔结构,包括埃洛石的介孔内腔,氧化硅片层溶解后产生的微孔,以及多孔炭的微孔;同时,该复合材料具有较高的比表面积和总孔体积(最高分别可达672.5m2/g和0.231cm3/g),并对正己烷、苯、甲苯等有机气体具有较高的吸附量(室温条件下,其对正己烷、苯及甲苯的动态平衡吸附量分别可达:272.1、231.8和204.5mg/g用于吸附有机气体的埃洛石基多孔炭复合材料)。

附图说明:

图1为实施例1所制备的用于吸附有机气体的埃洛石基多孔炭复合材料的接触角。

图2为实施例2所制备的用于吸附有机气体的埃洛石基多孔炭复合材料的孔径分布曲线。

图3为实施例3所制备的用于吸附有机气体的埃洛石基多孔炭复合材料的动态吸附穿透曲线。

具体实施方式:

为了使本发明的目的、技术方案和有益技术效果更加清晰,以下结合实施例,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的实施例仅仅是为了解释本发明,并非为了限定本发明,实施例的参数、比例等可因地制宜做出选择而对结果并无实质性影响。实施例中除特殊说明外,均为本领域常规试剂和方法步骤。

实施例1

1)将15g埃洛石置于管式炉中,在饱和水蒸气气氛下,500℃煅烧4h,得到活化埃洛石;

2)将步骤1)所得15g活化埃洛石与150ml浓度为3m的naoh溶液混合,300rpm充分搅拌2h,然后4000rpm离心分离10min,保留固体,得到选择性刻蚀的埃洛石;

3)称取10g步骤2)所得的选择性刻蚀埃洛石与50ml糠醇溶液混合并超声(40khz)分散30min,然后抽真空(10min,重复5次)得到选择性刻蚀埃洛石与糠醇溶液的混悬液;

4)将步骤3)所得混悬液置于管式炉中,在氮气气氛下,以5℃/min的速率升温,600℃恒温8h,得到用于吸附有机气体的埃洛石基多孔炭复合材料。

图1为本实施例所制备的用于吸附有机气体的埃洛石基多孔炭复合材料的接触角图。从图中可以看出,该复合材料具有较好的疏水性。

根据bet法测得本实施例所制备的用于吸附有机气体的埃洛石基多孔炭复合材料的比表面积为621.3m2/g,总孔体积为0.212cm3/g。

通过动态吸附实验测得本实施例所制备的用于吸附有机气体的埃洛石基多孔炭复合材料的对正己烷、苯和甲苯的动态平衡吸附量分别为272.1、224.6和201.7mg/g用于吸附有机气体的埃洛石基多孔炭复合材料。

实施例2

1)将20g埃洛石置于管式炉中,在饱和水蒸气气氛下,800℃煅烧2h,得到活化埃洛石;

2)将步骤1)所得20g活化埃洛石与500ml浓度为2m的koh溶液混合,300rpm充分搅拌4h,然后4000rpm离心分离10min,保留固体,得到选择性刻蚀的埃洛石;

3)称取15g步骤2)所得的选择性刻蚀埃洛石与150ml糠醇溶液混合并超声(40khz)分散30min,然后抽真空(20min,重复4次),得到选择性刻蚀埃洛石与糠醇溶液的混悬液;

4)将步骤3)所得混悬液置于管式炉中,在氮气气氛下,以8℃/min的速率升温,于750℃恒温5h,得到用于吸附有机气体的埃洛石基多孔炭复合材料。

图2为本实施例所制备的用于吸附有机气体的埃洛石基多孔炭复合材料的孔径分布曲线。从图中可以看出,该复合材料具有多级孔结构。

根据bet法测得本实施例所制备的用于吸附有机气体的埃洛石基多孔炭复合材料的比表面积为672.5m2/g,总孔体积为0.231cm3/g。

通过动态吸附实验测得本实施例所制备的用于吸附有机气体的埃洛石基多孔炭复合材料的对正己烷、苯和甲苯的动态平衡吸附量分别为259.5、231.8和199.6mg/g用于吸附有机气体的埃洛石基多孔炭复合材料。

实施例3

1)将30g埃洛石置于管式炉中,在饱和水蒸气气氛下,1000℃煅烧1h,得到活化埃洛石;

2)将步骤1)所得30g活化埃洛石与1500ml浓度为0.5m的naoh溶液混合,300rpm充分搅拌8h,然后4000rpm离心分离10min,保留固体,得到选择性刻蚀的埃洛石;

3)称取25g步骤2)所得选择性刻蚀埃洛石与500ml糠醇溶液混合并超声(40khz)分散30min,然后抽真空(30min,重复3次),得到选择性刻蚀埃洛石与糠醇溶液的混悬液;

4)将步骤3)所得混悬液置于管式炉中,在氮气气氛下,以10℃/min的速率升温,于900℃恒温2h,得到用于吸附有机气体的埃洛石基多孔炭复合材料。

图3为本实施例所制备的用于吸附有机气体的埃洛石基多孔炭复合材料对正己烷、苯和甲苯的吸附穿透曲线。从图中可以看出,该复合材料展现出较好的正己烷、苯和甲苯吸附性能。

根据bet法测得本实施例所制备的用于吸附有机气体的埃洛石基多孔炭复合材料的比表面积为658.9m2/g,总孔体积为0.223cm3/g。

通过动态吸附实验测得本实施例所制备的用于吸附有机气体的埃洛石基多孔炭复合材料的对正己烷、苯和甲苯的动态平衡吸附量分别为248.9、216.1和204.5mg/g用于吸附有机气体的埃洛石基多孔炭复合材料。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1