本发明涉及制氢技术领域,尤其涉及钼改性镍铝合金复合材料的制备方法及其应用。
背景技术:
当今社会,人们目光由重视经济发展逐渐转移至生态文明、低碳经济建设上来,污染小、分布广的新型能源正迎合社会的迫切需求,开发潜力巨大。其中,氢作为一种可再生二次能源,其质量能量密度极高,能源效率极优,在燃料电池中拥有较高地位。氢燃料电池在运行过程中,不仅不产生有毒有害气体,而且无任何碳排放量,拥有无可比拟的优势。
苯作为氢的载体,其六元芳环结构拥有高氢碳比和较高的能量密度,用以自热重整制取氢气成本低,工艺简单,拥有独特的优势。而苯自热重整制氢相应催化剂的选取则为重中之重。
现有自热重整制氢催化剂包括铂催化剂、铜基制氢催化剂、镍基催化剂和雷尼镍催化剂,但是上述催化剂仍有诸多缺点,具体为:铂催化剂虽然活性高,选择性强,拥有无可比拟的绝对优势,但其成本颇高,不利于开发成本较低的催化剂,难以在工业大规模生产中采用;而目前大量采用的铜基制氢催化剂虽然选择性良好,但稳定性弱,在高温时铜元素易被氧化,造成催化剂中毒;普通的镍基催化剂断碳-碳键能力强,维持生成氢所需的高碳-碳键裂解率,具有较好的稳定性,但其烷基化现象却十分明显,副反应产生大量烷烃;作为通用型催化剂,以镍铝合金为基础的雷尼镍催化剂被广泛应用,但同时存在催化活性、选择性欠佳、骨架易碎、稳定性差等明显缺点。综上,上述常用技术都无法实现苯自热重整制氢催化剂催化效率、活性、稳定性、选择性和成本方面的平衡。
技术实现要素:
本发明解决的技术问题在于提供一种钼改性镍铝合金复合材料,该复合材料作为苯自热重整制氢的催化剂,具有高活性、稳定性和选择性。
有鉴于此,本申请提供了一种钼改性镍铝合金复合材料的制备方法,包括以下步骤:
a)制备镍铝合金雷尼镍;
b)将镍铝合金雷尼镍在钼源溶液中浸泡,洗涤、干燥,得到初始产物;
c)将所述初始产物进行焙烧,得到钼改性镍铝合金复合材料。
优选的,所述镍铝合金雷尼镍的制备方法具体为:
将镍-铝合金粉碎后置于氢氧化钠溶液中,得到镍铝合金雷尼镍。
优选的,镍-铝合金中镍的含量为40~50wt%;所述氢氧化钠溶液的浓度为25~45wt%。
优选的,所述钼源溶液为钼酸铵溶液、标准钼溶液或钼酸钾溶液。
优选的,所述浸泡的温度为40~50℃,时间为24~48h。
优选的,所述镍铝合金雷尼镍与所述钼源溶液中的钼离子的摩尔比为(6.75~8.5):1。
优选的,所述干燥的温度为90~110℃,时间为12~24h。
优选的,所述焙烧的升温速率为5~10℃/min,温度为300~500℃,时间为4~5h。
优选的,所述钼改性镍铝合金复合材料中钼的含量为3.5~5.8wt%。
本申请还提供了所述的制备方法所制备的钼改性镍铝合金复合材料在自热重整制氢中的应用。
本申请提供了一种钼改性镍铝合金复合材料的制备方法,其具体为:将镍铝合金雷尼镍在钼源溶液中浸泡,洗涤、干燥,得到初始产物;将所述初始产物进行焙烧,得到钼改性镍铝合金复合材料。该方法制备的钼改性镍铝合金复合材料形成了镍、铝、钼三种晶粒共同组成的催化剂骨架,其内含有纳米级多孔结构,整体呈多晶粒堆积且带有孔洞的海绵状结构;本申请复合材料中的钼可大大加强ni-al-mo骨架的稳定性,减少活性成分因重复使用,骨架结构遭到破坏所造成的损失;形成的介孔结构可令催化活性成分分散,增加活性位点数量,便于反应物与生成物的传递与扩散,使原有镍基催化剂耐烧结性差的情况大幅度改善,提高了催化效率与活性;被氧化的高价态钼颗粒为苯提供附着位点,并传递电子云便于氢气解吸脱附,从而增强其选择性。本发明相比于铂、铑等贵金属催化剂成本低廉,适用性强,可广泛应用于科学研究与实际生产。
附图说明
图1为本发明实施例1制备的钼改性镍铝合金复合材料的bjh孔径分布图。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
本申请提供了一种钼改性多孔结构镍铝合金,其针对现有催化剂稳定性、烷基化作用明显等问题提供了良好的解决问题,使得钼改性镍铝合金能够高效率催化苯自热重整制氢反应,并具有良好的稳定性、抗氧化性和选择性。具体的,本发明实施例公开了一种钼改性镍铝合金复合材料的制备方法,包括以下步骤:
a)制备镍铝合金雷尼镍;
b)将镍铝合金雷尼镍在钼源溶液中浸泡,洗涤、干燥,得到初始产物;
c)将所述初始产物进行焙烧,得到钼改性镍铝合金复合材料。
在钼改性镍铝合金复合材料的制备过程中,本申请首先制备了镍铝合金雷尼镍,其制备方法具体为:
将镍-铝合金粉碎后置于氢氧化钠溶液中,得到镍铝合金雷尼镍。
在此过程中,镍-铝合金中镍的含量为40~50wt%,氢氧化钠溶液的浓度为25~45%。
在得到镍铝合金雷尼镍之后,本申请则将其在钼源溶液中浸泡,此过程使用体积浸泡法,原始雷尼镍载体表面存在空隙,其与钼源溶液接触,因表面张力所致毛细作用将液体吸入雷尼镍载体内部,形成了钼改性的镍铝合金。在此过程中,所述钼源溶液为钼酸铵溶液、标准钼溶液或钼酸钾溶液;所述镍铝合金雷尼镍与所述钼源溶液中的钼离子的摩尔比为(6.75~8.5):1;所述浸泡的温度为40~50℃,时间为24~48h。
本申请然后将得到的产物洗涤,干燥,即得到初始产物,其再经过焙烧,即得到钼改性镍铝合金复合材料;所述洗涤采用去离子水和无水乙醇依次洗涤。所述干燥的温度为90~110℃,时间为12~24;所述焙烧的升温速率为5~10℃/min,温度为300~500℃,时间为4~5h。
本申请制备的钼改性镍铝合金由纳米级细小晶粒组成,活化后成分中部分铝将被碱去除,形成镍、铝、钼三种晶粒共同组成的合金骨架,镍晶粒大小为7.2nm左右;钼改性镍铝合金内含纳米级多孔结构,晶粒比表面积测量仪测量表明,比表面积为45m2/g;bjh孔径测量表明,此介孔结构富有2.2nm的中孔,整体呈多晶粒堆积且带有孔洞的海绵状结构。
本申请还提供了上述方案所制备的钼改性镍铝合金复合材料在自热重整制氢中的应用。在本申请中,所述钼改性镍铝合金复合材料优选在甲苯自热重整制氢中的应用或在苯自热重整制氢中的应用;更优选在苯自热重整制氢中的应用。
对于钼改性后的镍铝合金复合材料而言,其稳定性主要与ni-al-mo骨架的强度有关。普通的镍铝合金催化剂随着重复使用次数的增加,其ni-al骨架逐渐破损,活性组分流失,活性下降而影响其使用寿命。钼金属加入前,经能谱仪(eds)元素分析可知,三次使用后的镍铝合金催化剂铝元素损失量达64.3%,而钼金属加入后这一数值降至15.0%;可见通过钼金属的加入可以较大程度减少反应过程中铝的流失,维持其框架结构的稳定,提高催化剂的利用效率。
镍铝合金在钼金属改性后形成了介孔结构,此结构利于催化活性成分的分散,增加其位点数量,此自热重整反应中co歧化反应、co和co2的还原反应等反应造成碳分子被吸附在镍催化剂的活性中心上,引起活性中心不能自由参与吸附反应物与催化过程,从而产生积碳。钼改性后的镍铝合金分散活性中心,钼与镍对催化反应具有协同作用,催化活性位数量增加,对烧结现象有明显的抑制;同时介孔结构大大便于反应物与生成物的传递与扩散,从而提高催化效率与活性。
添加钼元素后的镍铝合金催化剂,因其参与苯自热重整制氢反应时内部的钼原子被氧化呈现高价态,可提供空轨道而呈弱碱性,完全可作为l酸吸附中心,可加强吸附路易斯酸碱定义中呈酸性的苯,并减少铝的流失;而且,钼氧化物上的电子云易向镍活化位点上转移,使得镍活化位点的电子云密度增大,增强了对生成氢气电子云的排斥作用,便于其解吸。这些影响同时提高催化剂活性、稳定性,特别是选择性大大增强,在反应温度处于550℃,压力为1atm、水碳比为6:1,钼成分质量分数为3.59%时其转化率可达到99.9%。
综上,本发明钼改性镍基催化剂制备简单,成本相对低廉,在苯自热重整制氢反应中具有高活性、稳定性和选择性;应用了当今化工生产常用于自热重整反应的镍基催化剂进行金属改性研究,补充其易烧结、选择性差等短板,使综合性能发挥到极致;应用了钼作为镍基催化剂的改性金属,其有针对性地改善镍与铝在自热重整制氢催化方面的缺陷,大大提高催化效果;设计了详细的催化剂制备方案及反应方案,满足实验室及工业生产要求,具有极强的实用性与可操作性。
为了进一步理解本发明,下面结合实施例对本发明提供的钼改性镍铝合金复合材料的制备方法及其应用进行详细说明,本发明的保护范围不受以下实施例的限制。
实施例1
将ni质量分数约为50%的ni-al合金进行粉碎,置于温度为80℃,质量分数为30%的氢氧化钠溶液搅拌2h,经去离子水、无水乙醇洗涤,制得镍铝合金雷尼镍;之后在50℃条件下用浓度为11.40g/l的钼酸铵(nh4)2moo4溶液对镍铝合金进行浸泡处理32小时,最后分别用去离子水、无水乙醇洗涤处理;过滤,将滤饼置于110℃干燥12h,后于马弗炉中5℃/min程序升温至400℃,焙烧5h,制得由钼改性的镍基催化剂。经配置溶液分光光度法检测,催化剂中钼质量分数占比3.5%~5.8%。
以此钼改性镍铝合金为催化剂。在固定床反应器上进行苯(分析纯,购置于阿拉丁试剂)水蒸气自热重整反应,总反应式为:c6h6+3h2o+1.5o2→6h2+6co。在空气气氛下将装有催化剂的石英管加热到550℃,并一直保持,催化剂用量质量分数≥2%;苯、水分别由平流泵控制进料,在预热器(140℃)中气化混合,并由载气空气带入石英管,空气的流量由泡沫流量计进行检测控制;反应条件为:温度550℃,载气空气的流量:0.75l·min-1,苯进料速率为2ml·min-1,水蒸气与碳物质的量之比为6:1。
在产品气体流量达到平稳并保持一定时间后,反应产物经冷凝器冷凝后,经液相色谱仪分析冷凝液中苯,用气相色谱仪分析气体产物中co2、co、ch4和h2;转化率以苯的气相碳转化率即产气中碳的摩尔数与进入反应器中苯的碳摩尔数的比值计算(如1),氢气的收率以产物中h的摩尔数与进入反应器中苯和水的碳摩尔数的比值计算(如2)。
式中,hh2表示氢气中氢原子的个数;fh2表示氢气的摩尔流率,mol·min-1;hbenzene表示苯中氢原子的个数;fbenzene表示苯的摩尔流率,mol·min-1;ci表示含碳物质的碳原子个数(i可为co、co2、ch4);fi表示含碳物质的摩尔流率,mol·min-1。
经测得,在该条件下,苯的转化率为99.9%,氢气的收率为98.7%。该催化剂应用于苯自热重整制氢的测试结果表明了此催化剂有优异的催化效率、活性、稳定性、选择性。
将上述制备的钼改性镍铝合金进行孔径分析仪测试,bjh孔径分布图如图1所示。
实施例2
钼改性的镍基催化剂制备方法同实施例1。
本改性催化剂仍可用于催化苯同系物发生自热重整反应。现以甲苯为例,在上述固定床中以甲苯为反应原料(分析纯,购置于阿拉丁试剂)进行水蒸气自热重整反应;在空气气氛下将装有催化剂的石英管加热到并保持在600℃,所用催化剂质量分数≥2%;甲苯、水分别由平流泵控制进料,在预热器(140℃)中气化混合,并由空气带入石英管,空气的流量由转子流量计进行检测控制;反应条件为:温度600℃,载气空气的流量为0.75l·min-1,甲苯进料速率为1.26ml·min-1,水的进料量为26.38ml·min-1,水蒸气与碳物质的量之比为3。
在产品气体流量达到平稳并保持一定时间后,反应产物由冷凝器进行冷凝,经液相色谱仪分析冷凝液中苯,用气相色谱仪分析气体产物中co2、co、ch4和h2;
由于甲苯较苯更难发生反应,经aspenplus软件模拟得,甲苯的自热重整反应应在更高的温度下进行反应,以得到更高的氢气产率,因此本实验将反应温度调至600℃。经测得,在该条件下,甲苯的转化率为100%,氢气的收率为97.3%。该催化剂应用于甲苯自热重整制氢的测试结果表明了此催化剂对于苯及其同系物的自热重整反应具有较好的催化活性。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。