一种船用高压空气干燥净化系统

文档序号:30616414发布日期:2022-07-02 01:07阅读:205来源:国知局
一种船用高压空气干燥净化系统

1.本发明涉及高压空气干燥净化技术领域,尤其是涉及一种船用高压空气干燥净化系统。


背景技术:

2.船用高压空气干燥净化系统采用微热再生吸附式工作原理,即两塔循环工作,一塔在高压吸附,另一塔就在低压微热再生。目前,现有技术中的船用高压空气干燥净化系统在开始工作时,由低压升压到高压需要一定时间,在低压大排量阶段,前置过滤器过滤效果很差,大量的油水得不到分离就直接进入干燥塔,大量的油雾和水分会造成干燥塔中的分子筛“中毒”失效,这样一来,需频繁的更换分子筛,分子筛的使用寿命大大降低,用户的压缩空气品质得不到保证,同时降低了干燥净化系统的工作效率;并且,在现有前置过滤器使用的过程中,随着时间推移,较大的固体颗粒和油滴会残留在前置过滤器内部,使前置过滤器过滤效率大大降低,进一步系统的工作效率降低。
3.所以如何有效延长分子筛寿命,保证用户的压缩空气品质,提高系统工作效率是一个有待解决的技术难题。


技术实现要素:

4.本发明所要解决的技术问题是提供一种结构简单、能够有效地延长分子筛寿命,并且保证用户的压缩空气品质、提高系统工作效率的船用高压空气干燥净化系统。
5.本发明所采用的技术方案是,一种船用高压空气干燥净化系统,包括系统本体,所述系统本体包括供压缩空气进入的进气口、沿进气口进气方向依次设置的分离净化模块、前置保压阀、干燥塔模块、后处理模块和排气口,所述分离净化模块包括油水分离器、第一过滤器和第二过滤器,所述油水分离器的进气端与压缩空气的进气口连通,油水分离器的出气端与第一过滤器的进气端连通,第一过滤器的出气端与第二过滤器的进气端连通,第二过滤器的出气端与前置保压阀的进气端连通,前置保压阀的出气端与干燥模块的进气端连通,干燥模块的出气端与后处理模块的进气端连通,后处理模块的出气端与排气口连通;所述的油水分离器为通过螺旋离心分离的方式对压缩空气中的固体颗粒、液滴和油滴进行分离的油水分离器,所述第一过滤器为采用多孔陶瓷滤芯过滤的第一过滤器,所述第二过滤器为采用活性炭滤芯过滤的第二过滤器;所述的前置保压阀用于使分离净化模块在初始工作时保持高压状态。
6.本发明的有益效果是:采用上述结构的船用高压空气干燥净化系统,在分离净化模块后增加前置保压阀,使得整个高压空气干燥净化系统达到了高压压缩除油水的目的,前置保压阀可以使分离净化模块初始就工作在高压状态,其开启压力设置为最高工作压力的1/2~2/3之间,这样就使得油水分离器、第一过滤器以及第二过滤器初始就工作在高压状态,使高压湿空气中的油水彻底分离后再进入干燥塔,避免了在低压升压阶段分离净化模块的过滤效果很差从而导致的分子筛“中毒”失效,有效延长分子筛寿命,保证用户的压
缩空气品质,提高系统工作效率;同时本发明中采用螺旋离心分离的油水分离器取代了原有技术中的前置过滤器,避免了较大的固体颗粒、液滴和油滴积累在过滤器芯内部排不出来,造成堵塞的情况发生,提高了过滤效率,同样也延长了分子筛寿命,进而提高系统的工作效率;另外本发明中通过第一过滤器的多孔陶瓷滤芯对具有一定粒径的油、水溶胶粒子的压缩空气进行精密过滤,再通过第二过滤器的活性炭滤芯对压缩空气中残存的微量油雾进行吸附,最大限度地杜绝微量油、水进入到干燥塔污染到分子筛,有效地延长分子筛寿命。
7.作为优选,所述油水分离器包括分离器本体、连接在分离器本体进气端的第一接头、连接在分离器本体出气端的第二接头、设置在分离器本体内部的螺旋离心分离器芯以及设置在分离器本体底部并与分离器本体内部相连通的第一排污通道;所述螺旋离心分离器芯包括连接在分离器本体内的器芯本体以及设置在器芯本体内部的第一排气通道,所述第一接头与所述进气口连通,所述第一排气通道的一端与分离器本体内部连通,第一排气通道的另一端通过第二接头与第一过滤器连通。采用该结构,湿压缩空气通过第一接头进入到分离器本体内部,螺旋离心分离器芯以较高速度旋转,湿压缩空气中较大颗粒的固体颗粒、油滴和液滴因为离心力被甩到分离器本体内部的壁面上,然后再沿着壁面下落,最后通过第一排污通道排出,经过分离的压缩空气依次通过第一排气通道和第二接头进入到第一过滤器中,达到了螺旋离心分离的目的,这样就可以有效地将湿压缩空气中较大颗粒的固体颗粒、油滴和液滴排出,有效地延长了分子筛寿命,提高过滤效率,保证用户的压缩空气品质、提高系统工作效率。
8.作为优选,所述第一过滤器包括第一过滤本体、连接在第一过滤本体进气端的第三接头、连接在第一过滤本体出气端的第四接头以及设置在第一过滤本体底部并与第一过滤本体内部连通的第二排污通道;所述多孔陶瓷滤芯设置在第一过滤本体内部,且多孔陶瓷滤芯包括第一滤芯本体以及设置在第一滤芯本体内并与第三接头连通的第二排气通道,所述第三接头与第二接头通过管道连通,所述第二排气通道通过多孔陶瓷滤芯与第四接头连通。采用该结构,压缩空气经过第三接头进入到第二排气通道,多孔陶瓷滤芯将压缩空气中的具有一定粒径的油、水溶胶粒子过滤掉,然后再通过第四接头进入到第二过滤器中,其过滤效率达到98%,过滤效率高,能够有效地延长了分子筛寿命,保证用户的压缩空气品质、提高系统工作效率。
9.作为优选,所述第二过滤器还包括第二过滤本体、连接在第二过滤本体进气端的第五接头、连接在第二过滤本体出气端的第六接头以及设置在第二过滤本体底部并与第二过滤本体内部连通的的第三排污通道,所述活性炭滤芯设置在第二过滤本体内部,且活性炭滤芯包括第二滤芯本体以及设置在第二滤芯本体内并与第四接头连通的第三排气通道,所述第五接头与第四接头通过管道连通,所述第三排气通道通过活性炭滤芯与第六接头连通,所述第六接头与前置保压阀的进气端连通。采用该活性炭油雾净化方法,压缩空气经过第五接头进入到第三排气通道,活性炭滤芯对压缩空气中残存的微量油雾进行吸附,过滤效率达到99.999%,过滤效率高,能够有效地延长了分子筛寿命,保证用户的压缩空气品质、提高系统工作效率。
10.作为优选,所述干燥模块包括第一干燥塔、第一二位三通阀、第二干燥塔、第二二位三通阀以及消音器,所述第一二位三通阀和第二二位三通阀均由plc控制,所述第一二位
三通阀的进气端通过plc控制用于与前置保压阀的出气端连通,所述第二二位三通阀的进气端通过plc控制用于与前置保压阀的出气端连通,所述第一二位三通阀的两个出气端通过plc控制用于分别与消音器和第一干燥塔连通;所述第二二位三通阀的两个出气端通过plc控制用于分别与消音器和第二干燥塔连通;当plc控制第一二位三通阀的进气端打开时,第一二位三通阀的进气端与前置保压阀的出气端连通,此时plc控制与第一干燥塔连接的第一二位三通阀的出气端打开,plc控制与消音器连接的第一二位三通阀的出气端关闭,plc控制第二二位三通阀的进气端关闭,plc控制与消音器连接的第二二位三通阀的出气端打开;当plc控制第二二位三通阀的进气端打开时,第二二位三通阀与前置保压阀的出气端连通,此时plc控制与第二干燥塔连接的第二二位三通阀的出气端打开,plc控制第一二位三通阀的进气端关闭,plc控制与消音器连接的第一二位三通阀的出气端打开,plc控制控制与消音器连接的第二二位三通阀的出气端关闭。采用该结构,从前置保压阀输出的压缩空气经过第一干燥塔或者第二干燥塔进行干燥,当由前置保压阀输出的高压空气经过第一干燥塔进行干燥时,此时第二干燥塔中的分子筛处于再生状态,分子筛再生后,被污染的空气由第二干燥塔通过消音器输出;当由前置保压阀输出的高压空气经过第二干燥塔进行干燥时,此时第一干燥塔中的分子筛处于再生状态,分子筛再生后,被污染的空气由第一干燥塔通过消音器输出;该结构简单,工作效率高。
11.作为优选,所述后处理模块还包括第一单向阀、第二单向阀、后置过滤器以及后置保压阀,所述第一单向阀的进气端与第一干燥塔连通,所述第一单向阀的出气端与后置过滤器的进气端连通,所述第二单向阀的进气端与第二干燥塔连通,所述第二单向阀的出气端与后置过滤器的进气端连通,所述后置保压阀的进气端与后置过滤器的出气端连通,所述后置保压阀的出气端与排气口连通,所述后处理模块还包括第一加热器、第二加热器、第三单向阀、第四单向阀以及减压阀,所述减压阀的进气端与后置保压阀的出气端连通,所述减压阀的出气端分别与第三单向阀的进气端和所述第四单向阀的进气端连通,所述第一加热器一端与第三单向阀的出气端连通,另一端与第一干燥塔连通,所述第二加热器一端与第四单向阀的出气端连通,另一端与第二干燥塔连通;当第一干燥塔对由第一二位三通阀的出气端输出的高压空气进行干燥,干燥后的空气由第一干燥塔输出并依次通过后置过滤器和后置保压阀,由后置保压阀输出的高压空气一部分通过排气口排出,另一部分进入减压阀,由减压阀输出的高压空气通过第四单向阀进入第二加热器,并由第二加热器加热后进入第二干燥塔供第二干燥塔中的分子筛进行再生;当第二干燥塔对由第二二位三通阀的出气端输出的高压空气进行干燥,干燥后的空气由第二二位三通阀输出并依次通过后置过滤器和后置保压阀,由后置保压阀输出的高压空气一部分通过排气口排出,另一部分进入减压阀,由减压阀输出的高压空气通过第三单向阀进入第一加热器,并由第一加热器加热后进入第一干燥塔供第一干燥塔中的分子筛进行再生。采用该结构,第一单向阀用于输出第一干燥塔的干燥空气,第二单向阀用于输出第一干燥塔的干燥空气,后置过滤器用于将第一单向阀或第二单向阀输出的干燥空气进行粉尘过滤,然后再将过滤后的空气输出给后置保压阀,后置保压阀最终通过排气口将净化后的干燥空气排出,在排气口和后置过滤器之间设置后置保压阀,后置保压阀可以有效地防止系统背压过低(如气瓶升压)时形成的高速气流对分子筛床层造成冲击而使分子筛破碎的情况发生,这样就能够有效地延长分子筛的使用寿命,并提高系统的工作效率;减压阀用于将从后置保压阀输出的干燥空气输给第
三单向阀或者第四单向阀,所述第三单向阀用于将干燥空气经第一加热器加热后输入进第一干燥塔,所述第四单向阀用于将干燥空气经第二加热器加热后输入进第二干燥塔;当第一干燥塔或者第二干燥塔处于吸附状态时,此时干燥空气通过对应的第一单向阀或者第二单向阀输出干燥空气,并依次通过后置过滤器、后置保压阀和排气口输出;当第一干燥塔和第二干燥塔之中的其中一个干燥塔处于吸附状态时,那么另一个干燥塔就处于再生状态;此时,对应的第二干燥塔或者第一干燥塔处于再生状态时,从后置保压阀输出的干燥空气中的一部分会通过减压阀、再通过第四单向阀或者第三单向阀经加热后进入到第二干燥塔或者第一干燥塔中供分子筛再生。该结构简单,操作方便,能够有效地延长分子筛的使用寿命,并提高系统的工作效率。
12.作为优选,所述系统本体还包括第一排污电磁阀、第一手动排污阀以及排污口,所述第一排污电磁阀的一端分别与油水分离器、第一过滤器以及第二过滤器连接,另一端与排污口连接,所述第一手动排污阀的一端分别与油水分离器、第一过滤器以及第二过滤器连接,另一端与排污口连接,采用该结构,排污口能够将油水分离器、第一过滤器以及第二过滤器排出的油、水以及固体颗粒排出系统外,该结构简单,操作方便。
13.作为优选,所述系统本体还包括第二排污电磁阀以及第二手动排污阀,所述第二排污电磁阀的一端与后置过滤器连接,另一端与排污口连接,所述第二手动排污阀的一端与后置过滤器连接,另一端与排污口连接,采用该结构,排污口能够将后置过滤器过滤出来的油、水以及固体颗粒排出系统外,该结构简单,操作方便。
附图说明
14.图1为本发明一种船用高压空气干燥净化系统的模块图;
15.图2为本发明一种船用高压空气干燥净化系统的结构示意图;
16.图3为本发明中分离净化模块的结构示意图;
17.如图所示:1、进气口;2、分离净化模块;3、干燥模块;4、排气口;5、油水分离器;6、第一过滤器;7、第二过滤器;8、排污口;9、分离器本体;10、第一接头;11、第二接头;12、螺旋离心分离器芯;13、第一排污通道;14、器芯本体;15、第一排气通道;16、第一排污电磁阀;17、第一过滤本体;18、第三接头;19、第四接头;20、第二排污通道;21、多孔陶瓷滤芯;22、第二排气通道;23、第二过滤本体;24、第五接头;25、第六接头;26、第三排污通道;27、活性炭滤芯;28、第三排气通道;29、第一手动排污阀;30、前置保压阀;31、第一干燥塔;32、第一二位三通阀;33、第二干燥塔;34、第二二位三通阀;35、消音器;36、第一加热器;37、第二加热器;38、第一单向阀;39、第二单向阀;40、后置过滤器;41、后置保压阀;42、第三单向阀;43、第四单向阀;44、减压阀;45、节流阀;46、露点仪;47、第二手动排污阀;48、第二排污电磁阀;49、第一滤芯本体;50、第二滤芯本体;51、后处理模块;52、前置保压阀出口接头。
具体实施方式
18.以下参照附图并结合具体实施方式来进一步描述发明,以令本领域技术人员参照说明书文字能够据以实施,本发明保护范围并不受限于该具体实施方式。
19.本领域技术人员应理解的是,在本发明的公开中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关
系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
20.本发明涉及一种船用高压空气干燥净化系统,包括系统本体,如图1所示,所述系统本体包括供压缩空气进入的进气口1、沿进气口1进气方向依次连接的分离净化模块2、与分离净化模块2连接的干燥模块3、与干燥模块3连接的后处理模块以及与后处理模块51连接的排气口4,所述分离净化模块2包括与进气口连接的油水分离器5、与油水分离器5连接的第一过滤器6以及一端与第一过滤器6连接另一端与干燥模块3连接的第二过滤器7,所述油水分离器5通过离心分离的方式对压缩空气中的固体颗粒、液滴和油滴进行分离,所述第一过滤器6包括多孔陶瓷滤芯21,所述第二过滤器7包括活性炭滤芯27。
21.图1结构的船用高压空气干燥净化系统,通过进气口1的湿压缩空气首先经过油水分离器5,油水分离器5采用螺旋离心分离的方式将湿压缩空气中的颗粒较大的固体颗粒、油滴和液滴分离出去,然后再通过第一过滤器6的多孔陶瓷滤芯21进行进一步的精细过滤,对具有一定粒径的油、水溶胶粒子进行过滤,再通过第二过滤器7的活性炭滤芯27更进一步精细过滤,利用活性炭滤芯27对压缩空气中残存的微量油雾进行吸附,这样就可以最大限度地杜绝油、水进入到干燥塔污染到分子筛,有效地延长分子筛寿命,保证用户的压缩空气品质、提高系统工作效率;原有技术中采用的是前置过滤器来对湿压缩空气进行过滤,避免了较大的固体颗粒、液滴和油滴积累在过滤器芯内部排不出来,造成堵塞的情况发生,提高了过滤效率,本发明中取消了前置过滤器的使用,在初级分离时选用螺旋离心分离法代替了传统的过滤法,油水分离器5代替传统的前置过滤器,油水分离器5通过离心力作用,清除了较大的固体颗粒、液滴和油滴,避免了传统的前置过滤器内部堵塞,从而保证了油水分离分系统的可靠性,有效延长了分子筛的寿命。
22.如图2所示,所述系统本体还包括前置保压阀30,所述前置保压阀30一端与第二过滤器7连接,另一端与干燥模块3连接,所述干燥模块3包括第一干燥塔31、第一二位三通阀32、第二干燥塔33、第二二位三通阀34以及消音器35,所述第一二位三通阀32的进气端与前置保压阀30连接,所述第一二位三通阀32的排气端与消音器35连接,所述第一二位三通阀32的排气端4与第一干燥塔31的一端连接,所述第二二位三通阀34的进气端与前置保压阀30连接,所述第二二位三通阀34的排气端与消音器35连接,所述第二二位三通阀34的排气端4与第二干燥塔33的一端连接。
23.图2中,在第二过滤器7和干燥模块3之间设置一个前置保压阀30,压缩空气经过前置保压阀30进入到干燥塔,利用高压压缩法除油水原理,前置保压阀30设置在第二过滤器7之后,其开启压力设置为最高工作压力的1/2~2/3之间,这样就使得油水分离器5、第一过滤器6、第二过滤器7始终工作在高压状态,可以使高压湿空气中的油水彻底分离后再进入干燥塔,避免了在低压升压阶段中过滤器的过滤效果很差从而导致的分子筛“中毒”失效的情况,空压机向气瓶供气的初始压力很低,空压机往气瓶里充气大概需要3~5小时,充气前1小时为低压升压阶段,据初步计算45℃时,1mpa压力下1kg湿压缩空气含湿量是20mpa压力下的15倍左右。
24.本发明引入高压压缩除油水方法,在分离净化模块2后增加前置保压阀,使得分离净化模块2初始就工作在高压状态,使未处理压缩空气中油水彻底分离后再进入干燥塔,避
免了低压升压阶段中大量油、水进入到干燥塔污染分子筛,有效延长分子筛寿命,保证用户的压缩空气品质,提高系统工作效率。
25.如图3所示,所述油水分离器5包括分离器本体9、第一接头10、第二接头11、设置在分离器本体9内部的螺旋离心分离器芯12以及设置在分离器本体9底部的第一排污通道13,所述螺旋离心分离器芯12包括器芯本体14以及设置在器芯本体14内部的第一排气通道15,所述第一接头10一端与进气口1连通,另一端与分离器本体9内部连通,所述第一排气通道15一端与分离器本体9内部连通,另一端与第二接头11连通,第二接头11与第一过滤器6连通,第一接头10通过螺旋离心分离芯与第二接头11连通,采用该结构,湿压缩空气通过第一接头10进入到分离器本体9内部,通过螺旋离心分离器芯12高速旋转,湿压缩空气中较大颗粒的固体颗粒、油滴和液滴因为离心力被甩到分离器本体9内部的壁面上,然后再沿着壁面下落,最后通过第一排污通道13排出,经过分离的压缩空气依次通过第一排气通道15和第二接头11进入到第一过滤器6中,这样就可以有效地将湿压缩空气中较大颗粒的固体颗粒、油滴和液滴排出,有效地延长了分子筛寿命,提高过滤效率,保证用户的压缩空气品质、提高系统工作效率。
26.如图3所示,所述第一过滤器6还包括第一过滤本体17、第三接头18、第四接头19以及设置在第一过滤本体17底部的第二排污通道20,所述多孔陶瓷滤芯21设置在第一过滤本体17内部,所述多孔陶瓷滤芯21包括第一滤芯本体49以及第二排气通道22,所述第三接头18一端与第二接头11连通,另一端与第二排气通道22连通,所述第四接头19一端与第一滤芯本体49连通,另一端与第二过滤器7连通,图3中,压缩空气经过第三接头18进入到第二排气通道22,多孔陶瓷滤芯21将压缩空气中的具有一定粒径的油、水溶胶粒子过滤掉,然后再依次通过第一滤芯本体49和第四接头19进入到第二过滤器7中,过滤效率高,能够有效地延长了分子筛寿命,保证用户的压缩空气品质、提高系统工作效率。
27.第一过滤器6采用机械过滤工作原理,利用5um多孔陶瓷滤芯21的孔隙进行机械过滤,过滤高压气体中具有一定粒径的油、水溶胶粒子,过滤效率达到98%;多孔陶瓷滤芯21可以定期清洗。
28.如图3所示,所述第二过滤器7还包括第二过滤本体23、第五接头24、第六接头25以及设置在第二过滤本体23底部的第三排污通道26,所述活性炭滤芯27设置在第二过滤本体23内部,所述活性炭滤芯27包括第二滤芯本体50以及第三排气通道28,所述第五接头24一端与第四接头19连通,另一端与第三排气通道28连通,第六接头25一端与第二滤芯本体50连通,另一端与干燥模块3连通,图3中,压缩空气经过第五接头24进入到第三排气通道28,活性炭滤芯27对压缩空气中残存的微量油雾进行吸附,过滤效率高,能够有效地延长了分子筛寿命,保证用户的压缩空气品质、提高系统工作效率。
29.第二过滤器7采用活性炭过滤工作原理,利用活性炭滤芯27对压缩空气中残存的微量油雾进行吸附,过滤效率达到99.999%。将压缩气内微量的油雾过滤到0.1mg/m3范围以内;活性炭滤芯27可以定期更换。
30.本发明申请实施例采用高压压缩除油水法、螺旋离心分离法以及活性炭油雾净化法,在分离净化模块后增加前置保压阀,使得分离净化模块初始就工作在高压状态,使未处理压缩空气中油水彻底分离后再进入干燥塔,避免了低压升压阶段中大量油、水进入到干燥塔污染分子筛,有效延长分子筛寿命,保证用户的压缩空气品质,提高系统工作效率。
31.在图2中,第一二位三通阀32和第二二位三通阀34均由plc控制;当第一干燥塔31在吸附工作时,第一二位三通阀32通向第一干燥塔31的一路得电打开,第一二位三通阀32通向消音器35的一路关闭,待湿空气进入第一干燥塔31;同时,第二干燥塔33处于再生工作,第二二位三通阀34通向第二干燥塔33的一路失电关闭,第二二位三通阀34通向消音器35的一路打开,第二干燥塔33中的分子筛再生后,湿空气通过消音器35排出;然后进入下一轮循环,下一轮循环与此相反。
32.如图2所示,所述后处理模块51包括与第一干燥塔31的另一端连接的第一加热器36以及与第二干燥塔33的另一端连接的第二加热器37,所述后处理模块51还包括第一单向阀38、第二单向阀39、后置过滤器40以及后置保压阀41,所述第一单向阀38的进气端与第一加热器36连接,所述第一单向阀38的出气端与后置过滤器40连接,所述第二单向阀39的进气端与第二加热器37连接,所述第二单向阀39的出气端与后置过滤器40连接,所述后置保压阀41的进气端与后置过滤器40连接,所述后置保压阀41的出气端与排气口4连接,所述后处理模块51还包括第三单向阀42、第四单向阀43以及减压阀44,所述第三单向阀42的出气端与第一加热器36连接,所述第三单向阀42的进气端与减压阀44连接,所述第四单向阀43的出气端与第二加热器37连接,所述第四单向阀43的进气端与减压阀44连接,所述减压阀44的进气端与后置保压阀41的出气端连接;所述减压阀44的出气端均与第三单向阀42的进气端和第四单向阀43的进气端连接,第一单向阀38用于输出第一干燥塔31的干燥空气,第二单向阀39用于输出第一干燥塔31的干燥空气,后置过滤器用于将第一单向阀38或第二单向阀39输出的干燥空气进行进一步过滤,然后再将过滤后的空气输出给后置保压阀41,后置保压阀41最终通过排气口4将净化后的干燥空气排出,在排气口4和后置过滤器40之间设置后置保压阀41,后置保压阀41可以有效地防止系统背压过低(如气瓶升压)时形成的高速气流对分子筛床层造成冲击而使分子筛破碎的情况发生,这样就能够有效地延长分子筛的使用寿命,并提高系统的工作效率;减压阀44用于将从后置保压阀41输出的干燥空气输给第三单向阀42或者第四单向阀43,所述第三单向阀42用于将干燥空气经加热器36加热后输入进第一干燥塔31,所述第四单向阀43用于将干燥空气经加热器37加热后输入进第二干燥塔33;当第一干燥塔31或者第二干燥塔33处于吸附状态时,此时干燥空气通过对应的第一单向阀38或者第二单向阀39输出干燥空气,并依次通过后置过滤器40、后置保压阀41和排气口4输出;当第一干燥塔31和第二干燥塔33之中的其中一个干燥塔处于吸附状态时,那么另一个干燥塔就处于再生状态;此时,对应的第二干燥塔33或者第一干燥塔31处于再生状态时,从后置保压阀41输出的干燥空气中的一部分会通过减压阀44、再通过第四单向阀43或者第三单向阀42进入到第二干燥塔33或者第一干燥塔31中供分子筛再生。该结构简单,操作方便,能够有效地延长分子筛的使用寿命,并提高系统的工作效率。
33.图2中,以第一干燥塔31处于吸附状态第二干燥塔33处于再生状态为例:当第一干燥塔31处于吸附状态时,此时干燥空气通过对应的第一单向阀38输出干燥空气,干燥空气依次通过后置过滤器40进行进一步过滤,再经过后置保压阀41,最终由排气口4输出;在第一干燥塔31进行吸附的同时,第二干燥塔33处于再生状态,由后置保压阀41输出的一部分干燥空气通过减压阀44减压成低压空气,再通过第四单向阀43经加热器37加热后进入到第二干燥塔33中供分子筛再生,进入第二干燥塔33中的干燥空气吸收了分子筛的水分后变成了湿空气,最终通过消音器35排出。
34.图2中,以第一干燥塔31处于再生状态第二干燥塔33处于吸附状态为例:当第二干燥塔33处于吸附状态时,此时干燥空气通过对应的第二单向阀39输出干燥空气,干燥空气依次通过后置过滤器40进行进一步过滤,再经过后置保压阀41,最终由排气口4输出;在第二干燥塔33进行吸附的同时,第一干燥塔31处于再生状态,由后置保压阀41输出的一部分干燥空气通过减压阀44减压成低压空气,再通过第三单向阀42经加热器36加热后进入到第一干燥塔31中供分子筛再生,进入第一干燥塔31中的干燥空气吸收了分子筛的水分后变成了湿空气,最终通过消音器35排出。
35.如果当前时刻第一干燥塔31处于吸附状态第二干燥塔33处于再生状态,那么在下一时刻第一干燥塔31就处于再生状态第一干燥塔31就处于吸附状态,以此循环。
36.在图2中,在排气口4和后置过滤器40之间设置后置保压阀41,可以有效地防止系统背压过低(如气瓶升压)时形成的高速气流对分子筛床层造成冲击而使分子筛破碎的情况发生。后置保压阀41开启压力设置为最高工作压力的1/3—1/2之间。
37.在图2中,第一加热器36和第二加热器37的主要作用是为了克服焦耳汤姆森效应,给再生气进行加热。
38.如图2所示,所述减压阀44所在的管路上露点仪46,所述露点仪46的进气管路上设有调节露点仪46的空气流量的节流阀45;所述露点仪46用于检测减压44输出的高压气体的露点温度。
39.如图2所示,所述系统本体还包括第一排污电磁阀16、第一手动排污阀29以及排污口8,所述第一排污电磁阀16的一端分别与油水分离器5、第一过滤器6以及第二过滤器7连接,另一端与排污口8连接,所述第一手动排污阀29的一端分别与油水分离器5、第一过滤器6以及第二过滤器7连接,另一端与排污口8连接,采用该结构,排污口8能够将油水分离器5、第一过滤器6以及第二过滤器7排出的油、水以及固体颗粒排出系统外,该结构简单,操作方便。
40.如图2所示,所述系统本体还包括第二排污电磁阀48以及第二手动排污阀47,所述第二排污电磁阀48的一端与后置过滤器40连接,另一端与排污口8连接,所述第二手动排污阀47的一端与后置过滤器40连接,另一端与排污口8连接,采用该结构,排污口8能够将后置过滤器40过滤出来的油、水以及固体颗粒排出系统外,该结构简单,操作方便。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1