一种形状记忆型抑制生物污损的复合气凝胶、制备方法及其应用

文档序号:30608897发布日期:2022-07-01 23:06阅读:194来源:国知局
一种形状记忆型抑制生物污损的复合气凝胶、制备方法及其应用

1.本发明涉及纳米材料技术领域,具体涉及一种形状记忆型抑制生物污损的复合气凝胶、制备方法及其应用。


背景技术:

2.界面太阳能水蒸发是一种可持续的清洁水生产新技术,即通过在水气界面处的光热转换材料将太阳能转化为热能,从而加速水蒸发,实现水与污染物的分离。当前,多孔光热材料具有促进光能吸收、蒸汽释出和抗盐析等优势,在太阳能水蒸发中得到广泛应用。然而,真实水环境中的大量微生物会粘附于多孔材料的内外表面,并进一步繁殖形成生物膜,形成生物污损堵塞水分和蒸汽输运通道,最终造成光热转换和水蒸发性能的下降。在自然界中,不仅是细菌,真菌的侵染也会污损材料。因此,有必要针对多孔光热材料发展有效便捷的广谱抗微生物设计和抗生物污损设计。此外,为了长期稳定使用,光热水蒸发材料还需具有良好的结构稳定性。
3.鉴于上述缺陷,本发明创作者经过长时间的研究和实践终于获得了本发明。


技术实现要素:

4.本发明的目的在于解决现有大多数太阳能水蒸发器件不具备抑制生物污损的能力和抵御外力破坏结构的能力,提供了一种形状记忆型抑制生物污损的复合气凝胶、制备方法及其应用。
5.为了实现上述目的,本发明公开了一种形状记忆型抑制生物污损的复合气凝胶,包括壳聚糖气凝胶单取向孔道结构、植物多酚涂层、多酚/铁离子螯合物,所述的植物多酚涂层均匀分布在所述壳聚糖气凝胶单取向孔道内壁上,所述多酚/铁离子螯合物位于所述壳聚糖气凝胶取向孔道顶端。
6.所述植物多酚涂层包括单宁酸,所述多酚/铁离子螯合物包括硫酸铁水合物。
7.所述单宁酸浓度为0.2%~0.4%。
8.所述硫酸铁水合物浓度为0.2%~0.4%。
9.所述复合气凝胶在1kw/m2的模拟太阳光光照强度下,蒸发量为1.96kgm-2
h-1

10.本发明还公开了上述形状记忆型抑制生物污损的复合气凝胶的制备方法,包括以下步骤
11.s1:制备仿生壳聚糖气凝胶:将壳聚糖溶液倒入聚苯乙烯模具中,采用单向冷冻铸造法冷冻,然后冷冻干燥得到初始壳聚糖气凝胶,通过含有氢氧化钠的甲醇溶液和叔丁醇溶液洗涤后再次冷冻干燥得到仿生壳聚糖气凝胶;
12.s2:制备仿生壳聚糖单宁酸铁复合气凝胶:配制单宁酸-氨丙基三乙氧基硅烷溶液,将仿生壳聚糖气凝胶浸泡在单宁酸-氨丙基三乙氧基硅烷溶液中,通过压缩-释放循环吸附单宁酸分子,然后将顶端浸没于硫酸铁溶液中形成单宁酸-fe光热层,用去离子水洗涤
后冷冻干燥得到壳聚糖单宁酸铁复合气凝胶。
13.所述步骤s1壳聚糖溶液的浓度为2%、氢氧化钠的甲醇溶液浓度为1%。
14.所述步骤s2中单宁酸和硫酸铁水合物的质量比为1:1。
15.所述步骤s2中在硫酸铁水合物溶液中反应时间为0.5~2h。
16.本发明还公开了上述形状记忆型抑制生物污损的复合气凝胶在界面太阳能驱动光热水处理中的应用。
17.本发明制备的壳聚糖基复合气凝胶包括取向孔道结构、单宁酸抗污损涂层、单宁酸/铁螯合物光热层,该气凝胶具有稳定的结构和水蒸发性能。气凝胶的取向孔道结构加速了水传输,保证水蒸发持续高效进行。单宁酸抗污损涂层通过压缩-释放循环均匀牢固的吸附在孔道内壁,提供了优异的抗污损性能。气凝胶顶层通过单宁酸铁离子的配位螯合变为深黑色,赋予了气凝胶高效的光热转换性能。该仿生壳聚糖基复合气凝胶在水下被外力压缩后,可以通过吸收水分恢复至原始状态,保证了结构的稳定性并且在抑制生物污损方面效果显著,可有效抑制大肠杆菌、金黄色葡萄球菌和白色念珠菌在气凝胶孔道内大量繁殖而堵塞孔道,保证水蒸发速率长效稳定。此外在处理含藻红或亚甲基蓝染料的模拟污水及模拟海水中蒸发速率具有循环稳定性。
18.本发明壳聚糖基复合气凝胶的制备方法,将壳聚糖溶液倒入聚苯乙烯模具中,并将模具放在液氮预冷的铜板上,添加液氮进行冷冻,完成后放入冷冻干燥机中冻干,得到初始的壳聚糖气凝胶;然后将壳聚糖气凝胶分别在含有氢氧化钠的甲醇溶液、叔丁醇溶液清洗后再次冷冻干燥得到仿生壳聚糖气凝胶;将仿生壳聚糖气凝胶浸泡于单宁酸-氨丙基三乙氧基硅烷溶液中,在溶液中进行压缩-释放循环,吸附单宁酸,完成后将仿生壳聚糖-单宁酸复合气凝胶顶端放置于硫酸铁溶液中,通过与铁离子配位络合变成深黑色作为光热层。结束后用去离子水震荡洗涤、冷冻干燥,得到仿生壳聚糖单宁酸铁复合气凝胶。
19.与现有技术比较本发明的有益效果在于:本发明设计制备了壳聚糖-单宁酸-铁仿生取向多孔气凝胶。其中利用壳聚糖仿生取向多孔气凝胶的形状记忆性能,完成植物多酚对气凝胶内部孔道的快速修饰,并利用铁-单宁酸的光热效应,实现高效太阳能水蒸发,该复合气凝胶具有良好的抗菌和抗生物污损性能,可有效阻止细菌和真菌在孔道内部形成生物膜,在高浓度微生物环境中保持86.8-92.1%的初始水蒸发性能。同时,复合气凝胶保持了形状记忆性能,在水下可以承受外力作用并恢复至原始状态,实现长期结构稳定性。此外,复合气凝胶在人工海水和人工污水中循环使用性好,收集的洁净水质量高。
附图说明
20.图1为壳聚糖气凝胶横、纵截面的扫描电子显微镜照片;
21.图2为壳聚糖-单宁酸气凝胶(a)和天然橡木(b)直接置于fe
3+
溶液12小时,壳聚糖-单宁酸气凝胶在fe
3+
溶液中经历挤压-释放循环6次后(c)的实物照片
22.图3为壳聚糖单宁酸铁复合气凝胶实物照片和横、纵截面的扫描电子显微镜照片;
23.图4为壳聚糖单宁酸铁复合气凝胶横截面的元素分布图;
24.图5为壳聚糖单宁酸铁复合气凝胶和壳聚糖气凝胶的x射线光电子能谱图;
25.图6为壳聚糖单宁酸铁复合气凝胶和壳聚糖气凝胶的红外光谱图;
26.图7为壳聚糖单宁酸铁复合气凝胶的水接触角图;
27.图8为壳聚糖单宁酸铁复合气凝胶在水中的形状记忆功能实物图;
28.图9为壳聚糖单宁酸铁复合气凝胶在水下压缩恢复能力实物图;
29.图10为壳聚糖单宁酸铁复合气凝胶在水下沿着横向和纵向压缩应变50%时循环100圈的应力-应变曲线图;
30.图11为壳聚糖单宁酸铁复合气凝胶在水下压缩100圈后的横纵截面扫描电子显微镜图片;
31.图12为壳聚糖单宁酸铁复合气凝胶和壳聚糖气凝胶在大肠杆菌、金黄色葡萄球菌和白色念珠菌的抑菌圈图片;
32.图13为壳聚糖单宁酸铁复合气凝胶和壳聚糖气凝胶在大肠杆菌、金黄色葡萄球菌和白色念珠菌的抑菌圈直径;
33.图14为壳聚糖单宁酸铁复合气凝胶和壳聚糖气凝胶在大肠杆菌、金黄色葡萄球菌和白色念珠菌培养72h后的扫描电子显微镜图片;
34.图15为壳聚糖单宁酸铁复合气凝胶和壳聚糖气凝胶在大肠杆菌、金黄色葡萄球菌和白色念珠菌培养72h后经过am-pi染色后的荧光显微镜图片;
35.图16为壳聚糖单宁酸铁复合气凝胶和壳聚糖气凝胶的紫外-可见-近红外吸收光谱;
36.图17为壳聚糖单宁酸铁复合气凝胶、壳聚糖气凝胶和水在1个太阳光强度照射下的升温曲线;
37.图18为壳聚糖单宁酸铁复合气凝胶、cs-tf气凝胶在1个太阳光强度照射下菌液培养前后的水蒸发性能和保持能力图;
38.图19为壳聚糖单宁酸铁复合气凝胶在人工海水中连续蒸发12h的质量损失图;
39.图20为壳聚糖单宁酸铁复合气凝胶在人工海水循环蒸发15次的水蒸发能力图;
40.图21为壳聚糖单宁酸铁复合气凝胶处理前后水中钠、镁、钾、钙离子浓度变化;
41.图22为壳聚糖单宁酸铁复合气凝胶处理前后水中铜、锌、镉、铅离子浓度变化;
42.图23为壳聚糖单宁酸铁复合气凝胶抗盐析能力的实物图;
43.图24为壳聚糖单宁酸铁复合气凝胶处理藻红和亚甲基蓝染料前后溶液的紫外-可见光光谱图;
44.图25为壳聚糖单宁酸铁复合气凝胶处理自然河流和湖泊前后水中的菌浓度变化。
具体实施方式
45.以下结合附图,对本发明上述的和另外的技术特征和优点作更详细的说明。
46.实施例1
47.本实施例制备仿生壳聚糖气凝胶(cs气凝胶),具体步骤如下:
48.(1)取2g壳聚糖粉末均匀混入99ml去离子水和1ml醋酸中,搅拌过夜,得到2%的壳聚糖溶液;
49.(2)将壳聚糖溶液用液氮进行取向冷冻,然后冷冻干燥得到初始的壳聚糖气凝胶,冷冻时间30min、冷冻干燥时间48h;
50.(3)初始的壳聚糖气凝胶分别浸泡在含有氢氧化钠的甲醇溶液、叔丁醇溶液中洗涤,然后用液氮冷冻,再进行冷冻干燥得到仿生壳聚糖气凝胶。
51.图1为本实施例中壳聚糖气凝胶的横向和纵向的扫描电子显微镜照片和实物照片,我们发现其纵向具有取向孔道结构和横向具有蜂窝状多孔结构,孔径大小为20-200μm。
52.实施例2
53.本实施例制备壳聚糖单宁酸铁复合气凝胶(cst气凝胶),具体步骤如下:
54.(1)配制单宁酸-tris缓冲溶液:将0.2g单宁酸粉末溶解于100ml tris-hcl缓冲溶液(ph=8.5)中,超声10min得到单宁酸-tris缓冲溶液;
55.(2)配制单宁酸-氨丙基三乙氧基硅烷(ta-aptes)溶液:将0.2g aptes溶解于20ml无水乙醇中,然后缓慢加入到单宁酸缓冲液中,混合均匀得到(ta-aptes)溶液;
56.(3)将壳聚糖气凝胶浸泡于ta-aptes溶液中,在溶液中进行6次压缩-释放循环静置,清洗后冻干,得到仿生壳聚糖单宁酸气凝胶;
57.(4)将壳聚糖单宁酸气凝胶顶端浸润于0.2%硫酸铁溶液中,通过单宁酸和铁离子螯合配位0.5h,使顶端变成深黑色,清洗后冷冻干燥,得到仿生壳聚糖单宁酸铁复合气凝胶。
58.图2为壳聚糖-单宁酸气凝胶(a)和天然橡木(b)直接置于fe
3+
溶液12小时,壳聚糖-单宁酸气凝胶在fe
3+
溶液中经历挤压-释放循环6次后(c)的实物照片,单宁酸和fe
3+
易于发生配位作用,形成黑色物质。根据黑色物质的含量,说明形状记忆性能能显著促进物质在孔道内的传输,实现孔道表面的充分修饰。有效的孔道修饰对实现良好的抗生物污损性能具有关键作用。
59.图3为本实施例中壳聚糖单宁酸铁复合气凝胶的实物照片、横向和纵向的扫描电子显微镜照片,其竖直方向具有取向孔道结构和横向蜂窝状多孔结构,提供了水传输和蒸汽溢出的通道;实物照片中顶层为深黑色,可吸收太阳光转化为热能、下端为红棕色具有抗生物污损能力,抵御微生物在气凝胶表面生长繁殖。
60.图4为本实施例中壳聚糖单宁酸铁复合气凝胶顶部横截面的eds mapping能谱分布图,从能谱中看出复合气凝胶具有壳聚糖的c、o元素信号、aptes中的si元素信号和硫酸铁的fe元素信号。信号分布呈现气凝胶多孔轮廓状,证明了壳聚糖气凝胶顶端均匀的修饰了ta-fe层。
61.图5是壳聚糖单宁酸铁复合气凝胶和壳聚糖气凝胶的x射线光电子能谱图,在xps谱图中,壳聚糖气凝胶只有c、n、o元素信号出现,而壳聚糖单宁酸铁复合气凝胶中不仅出现了c、n、o元素信号也出现了fe、si元素信号,证明了ta-fe层的存在。
62.图6是壳聚糖单宁酸铁复合气凝胶和壳聚糖气凝胶的红外光谱图,发现壳聚糖单宁酸铁复合气凝胶在波长为1635cm-1
,1540cm-1
,和760cm-1
时出现新吸收峰,分别对应了-c=n基团振动,苯环伸缩振动和ta-fe
3+
的振动,证明了顶端ta-fe层的配位螯合作用。
63.图7是本实施例中壳聚糖单宁酸铁复合气凝胶的水接触角图,从图中看出水滴在气凝胶上形成的接触角小于5
°
,说明了气凝胶优异的亲水能力。
64.图8是本实施例中壳聚糖单宁酸铁复合气凝胶在水中的形状记忆功能实物图,从图中看出,由不同模具制备的圆柱形、方形、心形、花瓣形复合气凝胶在水溶液中通过挤压、折叠等外力发生形变后,可以迅速吸水恢复到原始状态,说明了其抵御外力作用恢复的能力。
65.图9是本实施例中壳聚糖单宁酸铁复合气凝胶在水下压缩恢复能力实物图,为了
进一步说明恢复的速率,在水下对气凝胶压缩将近90%左右,迅速撤回外力,发现气凝胶在2s内迅速恢复至原始状态,说明了其优异的压缩恢复能力。
66.图10是本实施例中壳聚糖单宁酸铁复合气凝胶在水下分别沿着横向和纵向压缩应变为50%循环100圈的应力-应变曲线图,复合气凝胶在沿着横向和纵向压缩后塑性变形均较小,分别为1.0%和2.8%,基本恢复至原始状态。
67.图11是本实施例中壳聚糖单宁酸铁复合气凝胶在水下压缩100圈后的横纵截面扫描电子显微镜图片,通过对孔道结构的观察,发现压缩后的结构相对于原始状态没有发生明显变化,证明了复合气凝胶优异的抵御外力结构损坏的能力。
68.通过抑菌圈法评估壳聚糖单宁酸铁复合气凝胶和壳聚糖气凝胶样品对细菌(大肠杆菌、金黄色葡萄球菌)和真菌(白色念珠菌)的抑制能力,将不同气凝胶样品放置在接种了105cfu/ml的细菌、真菌的培养板上,将细菌培养板和真菌培养板分别放置在37℃和30℃的条件下培养24h,然后观察抑菌圈直径。图12是壳聚糖单宁酸铁复合气凝胶和壳聚糖气凝胶在大肠杆菌、金黄色葡萄球菌和白色念珠菌的抑菌圈图片,壳聚糖气凝胶在高浓度的大肠杆菌、金黄色葡萄球菌和白色念珠菌中都没有出现抑菌圈,说明其抗菌能力有限;壳聚糖单宁酸铁复合气凝胶样品在细菌和真菌培养板上周围均有明显的抑制范围,说明了单宁酸不仅对细菌和真菌均有很好的抑制能力。图13统计了不同培养板上的抑菌圈直径,壳聚糖单宁酸铁复合气凝胶对大肠杆菌、金黄色葡萄球菌和白色念珠菌的抑菌圈直径分别为15.6mm、16.26mm和15.3mm,壳聚糖气凝胶抑菌圈直径可以忽略不计,证明了壳聚糖单宁酸铁复合气凝胶具有一定的抗菌能力。
69.为了进一步观察不同气凝胶内部微生物生长情况,将气凝胶样品浸泡在浓度为105cfu/ml的大肠杆菌、金黄色葡萄球菌、白色念珠菌培养瓶中,并在37℃和30℃摇床中震荡培养3天,培养完成后,利用扫描电子显微镜对气凝胶样品进行观察。图14是壳聚糖单宁酸铁复合气凝胶和壳聚糖气凝胶在大肠杆菌、金黄色葡萄球菌和白色念珠菌培养3天后的扫描电子显微镜图片,壳聚糖气凝胶表面粘附了大量的相应菌种,相互堆积,形成致密的生物膜并阻塞孔道;壳聚糖单宁酸铁复合气凝胶在微生物菌液中培养后表面只有很少的菌体粘附,结构保持完整。说明了含有单宁酸涂层的壳聚糖单宁酸铁复合气凝胶能够有效地抑制细菌和真菌的生长繁殖,保证气凝胶材料不被微生物污染,避免菌体大量繁殖形成生物膜阻塞材料的多孔结构,最终影响水传输和蒸汽的溢出能力。
70.最后通过倒置荧光显微镜进一步观察气凝胶样品生物膜形成情况,首先将气凝胶样品按照上述方式培养完成后,用pbs缓冲液清洗3遍,然后加入钙黄绿素-碘化丙啶(am-pi)进行细胞染色20min,染色结束后在490nm和545nm的波长下使用荧光显微镜观察气凝胶样品生物膜情况;图15是壳聚糖单宁酸铁复合气凝胶和壳聚糖气凝胶在大肠杆菌、金黄色葡萄球菌和白色念珠菌培养72h后经过am-pi染色后的荧光显微镜图片,在亮场图像中,壳聚糖单宁酸铁复合气凝胶的孔道结构几乎没有被微生物附着,然而,在壳聚糖气凝胶的表面和内部通道上发现了大量异物填充其中,导致孔隙堵塞。在共聚焦荧光图像中,壳聚糖气凝胶样品中观察到强烈的绿色和红色荧光信号,说明存在大量活/死微生物细胞。相比之下,壳聚糖单宁酸铁复合气凝胶中几乎观察不到荧光信号,表明材料表面只粘附了很少的微生物细胞。由此进一步说明壳聚糖单宁酸铁复合气凝胶具有优异的抑制生物污损能力,可以有效抵御细菌和真菌的侵扰减少微生物的附着,从而可以保持孔道畅通,保障了材料
在复杂环境的长期稳定使用。
71.图16是壳聚糖单宁酸铁复合气凝胶和壳聚糖气凝胶的紫外-可见-近红外吸收光谱,从图中可以看出,壳聚糖气凝胶对光的吸收率较低,在大部分波长范围下的吸收率不足20%,而壳聚糖单宁酸铁复合气凝胶整体吸收率极大提升,在200-1000nm光谱范围吸收率高达90%以上,说明了ta-fe层具有优异的太阳光吸收能力。
72.图17是壳聚糖单宁酸铁复合气凝胶、壳聚糖气凝胶和水在1个太阳光强度照射下的升温曲线,壳聚糖单宁酸铁复合气凝胶在水中12分钟内迅速上升8.1℃,60分钟后继续上升2.2℃,并且能长时间维持温度稳定。而相同的太阳光辐照强度下,壳聚糖气凝胶的表面温度升温缓慢,即使在60分钟后也仅升高4.4℃,与水的温度变化相似。这些结果证实了黑色ta-fe涂层在太阳光光热转换中起着关键作用,提高材料的升温效果。
73.实施例3
74.本实施例制备壳聚糖/单宁酸铁气凝胶(cs-tf气凝胶),具体步骤如下:
75.(1)配制单宁酸-tris缓冲溶液:将0.2g单宁酸粉末溶解于100ml tris-hcl缓冲溶液(ph=8.5)中,得到单宁酸-tris缓冲溶液;
76.(2)配制单宁酸-氨丙基三乙氧基硅烷(ta-aptes)溶液:将0.2g aptes溶解于20ml无水乙醇中,然后缓慢加入到单宁酸缓冲液中,混合均匀得到(ta-aptes)溶液;
77.(3)将壳聚糖气凝胶顶端浸泡于ta-aptes溶液中,使顶端与单宁酸吸附,下层保持为壳聚糖气凝胶,再将上表面ta层浸没于0.2%的硫酸铁溶液中配位0.5h,使上层表面的单宁酸与fe
3+
螯合配位得到光热层。最后用去离子水清洗,冷冻干燥后得到cs-tf气凝胶。
78.图18是壳聚糖单宁酸铁复合气凝胶、cs-tf气凝胶在1个太阳光强度照射下菌液培养前后的水蒸发性能和保持能力图,在纯水条件下,cs-tf气凝胶和壳聚糖单宁酸铁复合气凝胶蒸发速率分别为1.89和1.96kg m-2
h-1
。然后将两种气凝胶分别在大肠杆菌、金黄色葡萄球菌和白色念珠菌营养液中培养72h后,再次测定水蒸发速率发现cs-tf气凝胶水蒸发速率显著降低至1.24kg m-2
h-1
,1.16kg m-2
h-1
和1.19kg m-2
h-1
,只能保持原始水蒸发速率的65.6%、61.4%和63.0%。相比之下,壳聚糖单宁酸铁复合气凝胶在相同条件下培养后的蒸发速率分别为1.80kg m-2
h-1
、1.70kg m-2
h-1
和1.75kg m-2
h-1
,明显高于cs-tf气凝胶,仅比原始水蒸发速率性能(1.96kg m-2
h-1
)略微降低了8.2%,13.3%和10.7%。从这些结果来看,抗生物污损设计可以保证太阳能水蒸发器在含菌水中稳定的蒸发性能。
79.图19是壳聚糖单宁酸铁复合气凝胶在1个太阳光照强度下的人工海水中连续蒸发12h的质量损失图,其具有良好的线性趋势,说明了水蒸发速率在连续12h不间断的测试中保持稳定,平均速率约为1.95kg m-2
h-1

80.图20是壳聚糖单宁酸铁复合气凝胶在1个太阳光照强度下的人工海水中循环蒸发15次,速率维持在1.95kg m-2
h-1
左右,表现出稳定的水蒸发性能。
81.通过电感耦合等离子体原子吸收光谱(icp-aes)测定初始人工海水和壳聚糖单宁酸铁复合气凝胶处理后收集冷凝水的金属离子浓度。如图21所示,初始人工海水na
+
、mg
2+
、k
+
、ca
2+
的离子浓度高达11120、1307、474.5、382mg/l,处理后收集冷凝水中na
+
、mg
2+
、k
+
、ca
2+
的离子浓度分别为1.38、0.13、0.38、0.04mg/l,离子浓度显著降低了4-5个数量级。
82.通过电感耦合等离子体原子吸收光谱(icp-aes)测定含有重金属离子的工业废水和壳聚糖单宁酸铁复合气凝胶处理后收集冷凝水的离子浓度。如图22是壳聚糖单宁酸铁复
合气凝胶处理前cu
2+
、zn
2+
、cd
2+
、pb
2+
离子浓度分别为540.5、1164、569.2、104.5mg/l,净化后的水中cu
2+
、zn
2+
、cd
2+
、pb
2+
离子浓度分别降低至0.095、0.122、0.046、0.067mg/l,模拟废水中的重金属离子浓度显著降低。
83.图23是壳聚糖单宁酸铁复合气凝胶抗盐析能力的实物图,将0.1g nacl晶体放置在气凝胶表面,盐结晶在60min内消失,说明盐分重新溶解到了整体水中。这是气凝胶优异的亲水性和垂直排列的微通道共同作用为表面提供足够的水,从而使盐结晶溶解在毛细作用力的水中而转移回整体水中。
84.图24是壳聚糖单宁酸铁复合气凝胶处理染料(藻红和亚甲基蓝)前后溶液的实物照片和紫外-可见光谱图,发现处理后收集的纯净水清澈透明,几乎没有原始的红色和蓝色出现。通过紫外可见分光光度计对初始的亚甲基蓝、藻红溶液和相应收集的冷凝水分别进行测试,净化后的冷凝水没有出现两种染料的特征峰,说明了收集得到的冷凝水已经基本上除去染料,复合气凝胶可有效地用于染料废水的净化。
85.选取了来自合肥市的河流、湖泊水体测试菌浓度变化,如图25所示,将采集的河流、湖泊的真实水体和复合气凝胶处理收集后的纯净水分别在培养板上培养24h,然后观察两种培养板,发现真实水体中的培养板上生长了大量菌落,收集后的纯净水的培养板上没有菌落出现,这表明了蒸发收集的冷凝水中不存在微生物,可以有效地避免微生物对水质的影响。
86.以上所述仅为本发明的较佳实施例,对本发明而言仅仅是说明性的,而非限制性的。本专业技术人员理解,在本发明权利要求所限定的精神和范围内可对其进行许多改变,修改,甚至等效,但都将落入本发明的保护范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1