钴纳米颗粒高效选择性催化体系及其还原炔烃生成(Z)-烯烃的方法

文档序号:30696875发布日期:2022-07-09 17:51阅读:179来源:国知局
钴纳米颗粒高效选择性催化体系及其还原炔烃生成(Z)-烯烃的方法
钴纳米颗粒高效选择性催化体系及其还原炔烃生成(z)-烯烃的方法
技术领域
1.本发明属于烯烃催化合成方法技术领域,涉及一种钴纳米颗粒高效选择性催化体系及其还原炔烃生成(z)-烯烃的方法,该方法是一种简单、廉价的、高效的(z)-烯烃的合成方法。具体涉及的是以一种钴金属盐、氨硼烷与醇类化合物原位生成的钴纳米颗粒高效选择性催化体系,该钴纳米颗粒高效选择性催化体系对于炔烃的选择性半氢化生成(z)-烯烃具有非常好的催化效果,产物产率高达96%。


背景技术:

2.烯烃及其衍生物是有机合成、农业、化工、医药等领域的重要组成部分。许多的药物以及药物中间体都含有特殊的双键结构,如新型血管抑制剂-康普瑞汀(combretastatin a4,ca-4),烯丙胺类广谱抗真菌药-萘替芬(naftifine),抗精神病、抗抑郁症药物氯普噻吨(chlorprothixene)。而针对烯烃的构型不同,可以分为(z)-烯烃和(e)-烯烃,而不同异构的分子,在一些应用上也表现了不同的效应。因此,高效、高选择性的立体选择性合成烯烃一直是研究者们追求的目标。炔烃立体选择性半氢化反应是合成烯烃的一种简便、直接的方法。由pd/caco3组成的lindlar催化剂是最早用于炔烃半氢化反应的催化剂。然而,有毒金属铅的使用和较差的选择性阻碍了该方法的广泛应用。所以研究人员一直都在寻找可替代的方案。近几十年来,过渡金属催化剂催化直接加氢已成为炔烃半加氢的重要途径,但是过渡金属的价格多为昂贵,储量有限,阻碍其可持续性发展。所以廉价金属催化剂成为了人们研究的热点,钴金属作为一种廉价金属,地球上储量丰富,已经被广泛运用于各种不饱和基团,比如炔烃、氰基、羰基等。
3.目前为止,已经有许多钴催化剂用于催化炔烃的选择性半氢化反应。
4.(1)2016年,chen等基于合理的催化剂设计实现了有效的选择性控制,报道了一种新的钴催化的炔烃立体发散转移氢化反应。此外,这种温和的体系仅使用低至0.2mol%的催化剂负载量都能很好的转移氢化带有广泛官能团的炔烃,产率高达90%以上。通过合成50多种具有良好化学和立体选择性的烯烃,突出了该方法的普遍适用性
[0005][0006]
(2)2018年,vinod等报道了一种新的分子定义的nnn型钴钳形配合物催化剂,以氨硼烷为氢源,催化炔烃转移半氢化为(z)-选择性烯烃。该催化剂显示了广泛的范围(脂肪族、芳香族和手性炔烃)以及广泛的官能团耐受性,例如卤化物、醇、缩醛、胺、醚、腈、硝基、
酯和杂环基序。
[0007][0008]
(3)2020年,jaiswal等人报道了一种高效且可重复使用的石墨烯负载的n-石墨修饰的钴纳米颗粒,以氨硼烷为氢源,并以串联方式对炔烃进行选择性催化加氢。催化剂的制备是通过一个简单的程序,使用廉价的乙酰丙酮钴与1,10-菲罗啉配体为催化剂前体,在乙醇中形成络合物,然后进行热解。这种稳定的纳米催化剂经过九次循环试验依然能够有效地运行。此外,机理研究清楚地表明,氨硼烷在立体选择性氢化反应中充当氢源,甲醇充当质子源。研究结果表明,石墨烯为载体的n-石墨修饰金属纳米颗粒在催化和有机合成领域具有深远意义并具有开发方面的潜力。
[0009][0010]
(4)2022年,sharma等人开发了不含膦、不稳定的钴催化剂用于在室温下催化炔烃半加氢合成z-烯烃。从喹啉胺配体中获得了定义明确的钳形钴配合物κ
3-(qnnnch2net2)cox2,而喹啉酰胺配体提供了半不稳定的螯合阴离子配合物κ
2-(qnn)cox2(n-c(o)hnet2
)。阴离子非钳型钴配合物是一种非常有效的催化剂,可在室温下以氨硼烷为氢源对炔烃进行催化转移半加氢。
[0011][0012]
虽然上述几种钴催化剂对于炔烃的选择性半氢化有着不错的催化效果,但是这些催化剂的合成都需要配体或者载体,复杂的催化剂的合成及表征过程增加了催化剂的合成费用,同时也影响了他们的普遍实用性,不能被普通实验室所使用。所以开发一种由市售钴金属盐组成的原位生成的催化体系是非常有必要的。


技术实现要素:

[0013]
为了克服传统钴催化剂的复杂的合成及表征过程,本发明提供了一种钴纳米颗粒高效选择性催化体系及其还原炔烃生成(z)-烯烃的方法,该钴纳米颗粒高效选择性催化体系是一种操作简便、廉价、高效、高选择性的原位生成的钴纳米颗粒高效选择性催化体系,该钴纳米颗粒高效选择性催化体系能够催化炔烃的选择性半氢化合成(z)-烯烃。
[0014]
本发明通过如下技术方案实现:
[0015]
本发明的一种钴纳米颗粒高效选择性催化体系,包括钴金属盐、氨硼烷和醇类化合物。
[0016]
进一步的,钴金属盐选用co(oac)2、cocl2、co(no3)2、coso4中的一种或几种。
[0017]
进一步的,按摩尔比,钴金属盐中的钴:氨硼烷、醇类化合物=(5-20):(20-300):(500-6000)。
[0018]
进一步的,醇类化合物选用甲醇、乙醇、异丙醇中的一种或几种的混合物。
[0019]
所述的钴纳米颗粒高效选择性催化体系为原位制备的非均相催化体系,其形成的具体形态为黑色具有磁性的钴纳米颗粒或钴纳米颗粒簇,形成钴纳米颗粒粒径为100-600nm。
[0020]
所述的钴纳米颗粒高效选择性催化体系可回收利用。
[0021]
本发明一种钴纳米颗粒高效选择性催化体系还原炔烃生成(z)-烯烃的方法,包括以下步骤:
[0022]
在密闭容器内,以炔类化合物为底物,以钴纳米颗粒高效选择性催化体系中的钴金属盐为催化剂,氨硼烷为氢源,醇类化合物为反应物和溶剂,形成反应体系,在30~120℃反应0.5~12h,得到(z)-烯烃。
[0023]
进一步的,反应体系的体积为密闭容器容积的30%~60%。
[0024]
优选反应温度为40-80℃,优选反应时间0.5~10h,更优选为0.5-5h。
[0025]
进一步的,按摩尔比,炔类化合物:钴纳米颗粒高效选择性催化体系中的钴元素=100:(10-20)。
[0026]
所述的炔类化合物包括但不限于双芳基乙炔类、双芳杂基乙炔类、单芳基-烷基类炔、单芳杂基烷基类炔、脂肪类炔化合物、萘炔中的一种。
[0027]
所述的双芳基乙炔类或双芳杂基乙炔类的结构式如下:
[0028][0029]
其中,ar为芳基、芳杂基、稠合环中的一种;
[0030]
其中,r1、r2、r3独自表示h、c1~c8烷基、c1~c8环烷基、c1~c8烷氧基、卤代基团、oh、cf3、no2、cn、cho中的一种。
[0031]
卤代基团为f、cl、br中的一种。
[0032]
当ar为芳基时,芳基为取代或未取代的五元或六元芳环,取代基为一个或多个,芳基的取代基选自h、c1~c8烷基、c1~c8烷氧基、卤代基团、oh、cf3、no2、cn、cho中的一种。
[0033]
当ar为芳杂基时,芳杂基为取代或未取代的五元或六元芳杂环,芳杂环上的杂原子优选为n、s、o中的一种或几种;芳杂基的取代基为ch3,et,tbu,och3,f,cl,br,cf3,no2,cn,cho中的一种或几种。
[0034]
单芳基-烷基类炔或单芳杂基烷基类炔的结构式如下:
[0035][0036]
其中,ar为芳基、芳杂基、稠合环中的一种;
[0037]
r4为h、烷基、c1-c10的环烷烃中的一种。
[0038]
脂肪类炔化合物的结构式如下:
[0039][0040]
r5、r6独自表示h、c1-c10的烷基、c3-c10环烷烃中的一种。
[0041]
所述的萘炔优选为2-萘乙炔。
[0042]
采用本发明的方法,底物转化率≥80%,(z)-烯烃选择性≥94%。
[0043]
本发明的以市售钴金属盐为催化剂,以氨硼烷为氢源,以甲醇为溶剂条件下原位生成的钴纳米催化体系,对炔烃进行选择性半氢化生成(z)-烯烃,该路线为炔烃的选择性半氢化提供了一条简单、廉价、高效的路线。其反应原理如下:
[0044][0045]
其中,r和r

根据炔类化合物的种类确定。
[0046]
与现有技术相比,本发明具有下列优点:
[0047]
(1)本发明通过实验证明,钴金属盐在氨硼烷与醇类化合物的存在下对于炔烃选择性半氢化具有非常好的催化活性与选择性,转化率高达99%,(z)-烯烃选择性达96%。且反应中产生的钴纳米颗粒高效选择性催化体系可回收利用。
[0048]
(2)本发明第一次发现了原位生成的钴纳米催化体系可催化炔烃的选择性半氢化,该体系省去了传统钴络合物催化剂的合成、纯化及表征过程,使得该催化体系操作简便、具有普遍实用性,能被普通实验操作人员使用。为(z)-烯烃的合成提供了一条操作简便、廉价、高效的路线。
附图说明
[0049]
图1为本发明实施例1制备的(z)-二苯乙烯((z)-2a)的1h-nmr图。
[0050]
图2为本发明实施例1制备的(z)-二苯乙烯((z)-2a)的
13
c-nmr图。
[0051]
图3为本发明实施例6制备的(z)-1-甲基-4-苯乙烯基苯((z)-2b)的1h-nmr图。
[0052]
图4为本发明实施例7制备的(z)-1-乙基-4-苯乙烯基苯((z)-2c)的1h-nmr图。
[0053]
图5为本发明实施例8制备的(z)-1-叔丁基-4-苯乙烯基苯((z)-2d)的1h-nmr图。
[0054]
图6为本发明实施例9制备的(z)-1-乙基-4-(4-甲基苯乙烯基)苯((z)-2e)的1h-nmr图。
[0055]
图7为本发明实施例10制备的(z)-1-溴-4-苯乙烯基苯((z)-2f)的1h-nmr图。
[0056]
图8为本发明实施例11制备的(z)-2-苯乙烯基苯甲酸甲酯((z)-2g)的1h-nmr图。
[0057]
图9为本发明实施例12制备的(z)-1-氟-4-(4-甲基苯乙烯基)苯((z)-2h)的1h-nmr图。
[0058]
图10为本发明实施例13制备的(z)-2-甲基-4-苯基丁-3-烯-2-醇((z)-2i)的1h-nmr图。
[0059]
图11为本发明实施例14制备的(z)-3-苯基-2-丙烯-1-醇((z)-2j)的1h-nmr图。
[0060]
图12为本发明实施例15制备的(z)-4-苯乙烯基吡啶((z)-2k)的1h-nmr图。
[0061]
图13为本发明实施例16制备的ca4的1h-nmr图。
[0062]
图14为本发明实施例1制备的(z)-二苯乙烯((z)-2a)的sem图。
[0063]
图15为本发明实施例1制备的(z)-二苯乙烯((z)-2a)的粒度分布图。
具体实施方式
[0064]
通过下述实施例将有助于理解本发明的目的、特征、优点、技术方法,但不能局限于本发明的内容。实施例中采用的实施条件可以根据具体使用的不同要求做进一步调整,未注明的实施条件为常规实验中的条件。
[0065]
以下实施例中,1h-nmr采用的测试溶剂为cdcl3或者dmso-d6。
[0066]
以下实施例中,粒度分布图采用莫尔文激光粒度分析仪进行检测,检测溶剂为蒸馏水。
[0067]
表1钴金属盐的用量及温度的考察
[0068][0069]
反应条件:二苯乙炔(0.5mmol)、co(oac)2、nh3·
bh3(0.5mmol),加热搅拌反应2小时。a转化率和z/e比值通过气相色谱法测定。
[0070]
实施例1(z)-二苯乙烯((z)-2a)的制备
[0071]
取5ml圆底烧瓶,密封,依次加入二苯乙炔(0.5mmol),co(oac)2(10mol%),1ml甲醇,搅拌均匀后,加入nh3·
bh3(0.5mmol),60℃下搅拌。反应结果由tlc检测,反应完全后,反应混合液在真空中浓缩除去甲醇,得到固体混合物由柱层析纯化,以石油醚和乙酸乙酯为洗脱剂,得无色液体。1h nmr(600mhz,cdcl3)δ7.27

7.16(m,10h),6.60(s,2h).
13
c nmr(101mhz,cdcl3)δ137.17,130.18,128.80,128.14,127.02。其核磁氢谱见图1,核磁碳谱见图2。
[0072]
其对应的结构式为:
[0073][0074]
当反应体系从粉红色透明变为无色透明,并有黑色磁性固体析出时,即为钴纳米颗粒高效选择性催化体系,对该钴纳米颗粒高效选择性催化体系进行检测分析,其sem图见图14,可以在图中看出,其为非均相催化体系,形成了黑色具有磁性的钴纳米颗粒或钴纳米颗粒簇,形成钴纳米颗粒平均粒径为370nm。
[0075]
对其粒径分布进行分析,其粒径分布图见图15,从图中可以看出,粒径呈正态分布,说明粒径大小较为均匀。所得纳米颗粒粒径约为370nm。
[0076]
实施例6(z)-1-甲基-4-苯乙烯基苯((z)-2b)的制备
[0077]
操作如实施例1通法所示,不同之处见表1,得无色液体。1h nmr(600mhz,dmso)δ7.28

7.19(m,5h),7.12

7.09(m,2h),7.06(d,j=7.8hz,2h),6.58(s,2h),2.26(s,3h)。其核磁氢谱见图3。
[0078]
其对应的结构式为:
[0079][0080]
实施例7(z)-1-乙基-4-苯乙烯基苯((z)-2c)的制备
[0081]
操作如实施例1通法所示,不同之处见表1,得无色液体。1h nmr(600mhz,dmso)δ7.28

7.20(m,5h),7.15

7.12(m,2h),7.09(d,j=8.1hz,2h),6.59(s,2h),2.56(q,j=7.6hz,2h),1.15(t,j=7.6hz,3h)。其核磁氢谱见图4。
[0082]
其对应的结构式为:
[0083][0084]
实施例8(z)-1-叔丁基-4-苯乙烯基苯((z)-2d)的制备
[0085]
操作如实施例1通法所示,不同之处见表1,得无色液体。1h nmr(600mhz,dmso)δ7.30

7.22(m,7h),7.17

7.13(m,2h),6.61

6.55(m,2h),1.24(s,9h)。其核磁氢谱见图5。
[0086]
其对应的结构式为:
[0087][0088]
实施例9(z)-1-乙基-4-(4-甲基苯乙烯基)苯((z)-2e)的制备
[0089]
操作如实施例1通法所示,不同之处见表1,得无色液体。1h nmr(600mhz,cdcl3)δ7.13

7.08(m,4h),6.98(dd,j=12.1,7.9hz,4h),6.44(s,2h),2.54(q,j=7.6hz,2h),2.24(s,3h),1.15(t,j=7.6hz,3h)。其核磁氢谱见图6。
[0090]
其对应的结构式为:
[0091][0092]
实施例10(z)-1-溴-4-苯乙烯基苯((z)-2f)的制备
[0093]
操作如实施例1通法所示,得无色液体。1h nmr(600mhz,cdcl3)δ7.36

7.32(m,2h),7.26

7.19(m,5h),7.11

7.09(m,2h),6.63(d,j=12.1hz,1h),6.50(d,j=12.2hz,1h)。其核磁氢谱见图7。
[0094]
其对应的结构式为:
[0095][0096]
实施例11(z)-2-苯乙烯基苯甲酸甲酯((z)-2g)的制备
[0097]
操作如实施例1通法所示,得无色液体。1h nmr(600mhz,dmso)δ7.94

7.90(m,1h),7.43

7.38(m,2h),7.19

7.14(m,4h),7.04

7.00(m,2h),6.98(d,j=12.2hz,1h),6.65(d,j=12.2hz,1h),3.81(s,3h)。其核磁氢谱见图8。
[0098]
其对应的结构式为:
[0099][0100]
实施例12(z)-1-氟-4-(4-甲基苯乙烯基)苯((z)-2h)的制备
[0101]
操作如实施例1通法所示,得无色液体。1h nmr(600mhz,dmso)δ7.28

7.23(m,2h),7.12

7.06(m,6h),6.61

6.54(m,2h),2.26(s,3h)。其核磁氢谱见图9。
[0102]
其对应的结构式为:
[0103][0104]
实施例13(z)-2-甲基-4-苯基丁-3-烯-2-醇((z)-2i)的制备
[0105]
操作如实施例1通法所示,得无色液体。1h nmr(400mhz,dmso)δ7.47(dd,j=7.9,1.4hz,2h),7.29(dd,j=8.4,6.8hz,2h),7.22

7.17(m,1h),6.30(d,j=13.0hz,1h),5.71(d,j=13.0hz,1h),4.65(s,1h),1.21(s,6h)。其核磁氢谱见图10。
[0106]
其对应的结构式为:
[0107][0108]
实施例14(z)-3-苯基-2-丙烯-1-醇((z)-2j)的制备
[0109]
操作如实施例1通法所示,得橙色液体。1h nmr(600mhz,dmso)δ7.44

7.27(m,5h),6.51(dt,j=12.0,2.0hz,1h),5.86(dt,j=12.0,6.1hz,1h),4.95(d,j=5.4hz,1h),4.29(dd,j=5.1,2.6hz,2h)。其核磁氢谱见图11。
[0110]
其对应的结构式为:
[0111][0112]
实施例15(z)-4-苯乙烯基吡啶((z)-2k)的制备
[0113]
操作如实施例1通法所示,得黄色液体。1h nmr(600mhz,dmso)δ8.46

8.44(m,2h),7.32

7.25(m,3h),7.23

7.20(m,2h),7.16

7.14(m,2h),6.87(d,j=12.2hz,1h),6.62(d,j=12.2hz,1h)。其核磁氢谱见图12。
[0114]
其对应的结构式为:
[0115][0116]
实施例16ca4的制备
[0117]
操作如实施例1通法所示,得淡黄色固体。1h nmr(600mhz,cdcl3)δ6.92(d,j=2.0hz,1h),6.80(dd,j=8.2,2.0hz,1h),6.74(d,j=8.3hz,1h),6.53(s,2h),6.47(d,j=12.2hz,1h),6.41(d,j=12.2hz,1h),5.50(s,1h),3.87(s,3h),3.84(s,3h),3.70(s,6h)。其核磁氢谱见图13。
[0118]
其对应的结构式为:
[0119]
[0120]
对比例1
[0121]
一种还原炔烃生成烯烃的方法,操作如实施例1通法所示,不同之处见表1,反应温度为20℃,通过表1可以看出反应温度降低,则转化率仅为47%,不能达到80%以上。
[0122]
对比例2
[0123]
一种还原炔烃生成烯烃的方法,操作如实施例1通法所示,不同之处见表1,不加入催化体系,则不能反应,也得不到(z)-烯烃。
[0124]
对比例3
[0125]
一种还原炔烃生成烯烃的方法,操作如实施例1通法所示,不同之处见表1,催化剂用量为钴金属盐的钴元素占底物的摩尔百分比为5mol%,通过表1可以看出转化率为64%,达不到高转化率。
[0126]
对比例4
[0127]
一种还原炔烃生成烯烃的方法,操作如实施例1通法所示,不同之处在于,甲醇加入量为0.2ml,反应体系占密闭容器的容积为20%,则得到的烯烃的选择性为20%,不满足要求。
[0128]
对比例5
[0129]
一种还原炔烃生成烯烃的方法,操作如实施例1通法所示,不同之处在于,采用开放式圆底烧瓶,则不会产生钴纳米,对炔烃的半氢化反应也无效果。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1