1.本发明涉及单原子钯催化剂和电化学传感,具体涉及一种以氮掺杂碳为载体的单原子钯催化剂的制备方法,以及将制得的催化剂用于电化学检测水体中的抗生素呋喃唑酮。
背景技术:2.呋喃唑酮(fzd)是一种重要的硝基呋喃类抗生素,广泛应用于抗菌剂和抗癌剂。服用的fzd不能被人体完全吸收,通常以25-50%的残留量随着尿液排出,1-2%转化成氨基化呋喃唑酮(aoz)。即使较低浓度的fzd释放到环境中,也会对生态环境造成严重的破坏,可能会引起致畸和致癌。因此,发展高灵敏的fzd检测技术是当前研究的热点。
3.相比高效液相色谱法、酶联免疫法、荧光法和分光光度法,电化学法由于操作简单、成本低廉、灵敏度高和选择性好等优点广泛应用于抗生素传感领域中。目前,碳基纳米材料、贵金属纳米材料和金属氧化物等用于电化学检测水体中的fzd,但仍存在检测范围窄、灵敏度低及催化剂成本较高等问题,因此需要寻求其他新型催化剂构建电化学传感用于高灵敏检测水体中的fzd。
4.单原子催化剂(sacs)是近年来新兴的新型催化剂,与传统的纳米材料相比,具有100%原子利用率,金属-载体强相互作用和均一的催化活性位点等优点,被广泛应用于工业、环境和能源转化等领域。然而,目前金属单原子具有较高的表面能,易迁移团聚为纳米团簇或颗粒。氮掺杂多孔碳具有较高的孔隙率,高比表面积和较高的导电性,可用于锚定单个金属原子。由于复杂水环境和催化活性不易控制,sacs在电化学检测水体抗生素应用较少。
5.因此,急需寻求一种氮掺杂碳负载单原子钯的催化剂的制备方法并将制得的催化剂应用于抗生素呋喃唑酮的检测。
技术实现要素:6.本发明的目的在于提供一种氮掺杂碳负载单原子钯催化剂的制备方法,并将所制得的催化剂修饰于电极用于水体中fzd的检测,且该检测方法应具有检测限低、稳定性高和选择性好等优点。
7.为达到上述目的,本发明采用下述技术方案:
8.一种氮掺杂碳负载单原子钯催化剂的制备方法,包括如下步骤:首先将葡萄糖、二氰二胺和四氯钯酸铵油浴混合均匀,接下来冷冻干燥去除溶剂,以防止单原子聚集团簇或纳米颗粒,最后高温煅烧得到氮掺杂碳负载钯单原子催化剂。
9.具体方法是:将葡萄糖和二氰二胺,在60-100℃条件下油浴一段时间,使二者溶解完全至透明;配制一定浓度的四氯钯酸铵溶液,将四氯钯酸铵、葡萄糖和二氰二胺按照物质的量的比1:130-150:540-560混合搅拌0.5-5小时,继续油浴,混合均匀;将混合均匀的溶液冷冻干燥去除溶剂,最后得到的固体混合样品在管式炉中在惰性气体氛围中600-900℃高
温煅烧1-4小时,得到氮掺杂碳负载单原子钯催化剂(pd1/n-c)。
10.其中,所述的四氯钯酸铵可以用硝酸钯、醋酸钯或氯化钯替代,四氯钯酸铵价格更便宜;
11.所述的二氰二胺为氮源,可用尿素或三聚氰胺替代。
12.所述的葡萄糖可用蔗糖或壳聚糖替代。
13.所述的油浴加热温度优选80℃为反应温度。
14.所述的四氯钯酸铵、葡萄糖、二氰二胺物质的量的比为:1:139:552
15.所述的混合搅拌时间优选4小时。
16.所述的惰性气体,优选高纯ar,高温处理温度较高,如果用n2可能会掺杂至催化剂中,而ar保证了不对反应产生干扰。
17.所述的煅烧温度优选800℃,煅烧时间优选2小时。
18.一种氮掺杂碳负载单原子钯催化剂修饰电极的制备方法,包括如下步骤:
19.将裸的玻碳电极(gce)用al2o3抛光,再用乙醇和水清洗,用氮气吹干使其镜面光滑干燥;将催化剂pd1/n-c溶于二次水超声形成1mg/ml的均匀分散液;取2-10μlpd1/n-c滴涂于玻碳电极表面,在红外灯下烤干,得到pd1/n-c修饰的玻碳电极。
20.所述的滴涂在玻碳电极的pd1/n-c的剂量优选6μl。
21.一种用pd1/n-c修饰的玻碳电极检测水体中fzd的方法,包括如下步骤:
22.(1)分别配制一系列不同浓度的fzd标准溶液;
23.(2)pd1/n-c修饰的玻碳电极作为工作电极,银/氯化银/饱和氯化钾作为参比电极和铂丝电极作为对电极组装三电极体系,置于0.1m磷酸盐缓冲溶液中(ph=7)对不同浓度的fzd进行检测,用循环伏安法(cv)记录不同浓度的fzd对应的峰值电流,根据峰值电流值与fzd标准溶液浓度,绘制标准曲线。
24.采用的循环伏安法,电位范围在-0.8~0.6v,富集时间2分钟。
25.作为对照,使用相同的方法制备氮掺杂碳(n-c)和钯纳米粒子(pdnps/n-c)修饰玻碳电极。
26.与现有技术相比,本发明的有益效果在于:与n-c和pdnps/n-c相比,pd1/n-c催化剂在中性溶液中对fzd的测定表现出最高的电化学活性。pd1/n-c传感器提供更宽的检测范围和检测限3.1nm,是pdnps/n-c的516倍,远远超过原始n-c。此外pd1/n-c还很好的表现出对实际水样中fzd检测的选择性。
附图说明
27.图1为氮掺杂碳负载的单原子钯催化剂的(c)球差电镜图和(d)元素分布图;
28.图2为单原子钯催化剂,钯纳米粒子和氮掺杂碳的xrd图;
29.图3为钯纳米粒子透射电镜图;
30.图4为单原子钯催化剂的cv表征实验,钯纳米粒子,氮掺杂碳修饰的玻碳电极在50μmfzd0.1mph=7.0pbs,扫速50mvs-1
;
31.图5为单原子钯催化剂的抗干扰分析。
具体实施方式
32.下面结合附图和实施例对本发明做进一步说明,以下实施例旨在说明本发明而不是对本发明的限定。
33.实施例1
34.1g葡萄糖和4g二氰二胺溶于60ml二次水,在80℃条件下油浴一段时间,使二者溶解完全至透明。逐滴加入10mmol/l 1ml四氯钯酸铵溶液将继续搅拌4小时,使三者混合均匀,随后将溶液冷冻干燥去除二次水,得到干燥的固体混合物样品,最后在ar保护下的管式炉中高温煅烧2小时得到氮掺杂碳负载的单原子pd催化剂(pd1/n-c)。
35.对比例1
36.1g葡萄糖和4g二氰二胺溶于60ml二次水,在80℃条件下油浴一段时间,使二者溶解完全至透明。将溶液冷冻干燥去除二次水,得到干燥的固体混合物样品,最后在ar保护下的管式炉高温煅烧2小时得到氮掺杂碳(n-c)。
37.对比例2
38.1g葡萄糖和4g二氰二胺溶于60ml二次水,在80℃条件下油浴一段时间,使二者溶解完全至透明。逐滴加入10mmol/l 10ml四氯钯酸铵溶液将继续搅拌4小时,使三者混合均匀,随后将溶液冷冻干燥去除二次水,得到干燥的固体混合物样品,最后在ar保护下的管式炉中高温煅烧2小时得到氮掺杂碳负载的pd纳米粒子(pd nps/n-c)。
39.催化剂表征:
40.从透射电镜(tem)中可知pd1/n-c呈褶皱片状石墨烯结构,高倍镜下的tem未观察到钯团簇和纳米粒子的存在,用球差电镜(haadf-stem)(图1c)可以明显观察到孤立的钯单原子,元素分布图说明pd,n,c均匀分散(图1d)。从图2xrd图谱显示pd1/n-c和 n-c只有石墨相的峰,未观察到钯纳米粒子特征峰,进一步说明了pd以单原子形式存在氮掺杂碳载体上。对比例2制备的pd纳米粒子在tem(图3)图谱中有明显的pd纳米颗粒。
41.实施例2
42.一种用于催化剂pd1/n-c修饰的电极检测fzd的方法,具体包括:
43.(1)裸的玻碳电极(gce)分别用1.0和0.05μm粒径的al2o3抛光,再用乙醇和水清洗1 分钟,用氮气吹干使其镜面光滑干燥。pd1/n-c溶于二次水超声形成1mg/ml的均匀分散液。取 6μl pd1/n-c置于玻碳电极表面,在红外灯下烤干,可得到pd1/n-c/gce。作为对照,使用相同的方法分别制备了n-c/gce和pd nps/n-c/gce。
44.(2)分别将gce,n-c/gce,pd nps/n-c/gce,pd1/n-c/gce浸入含有50μm fzd的 pbs(ph=7)的混合溶液,采用循环伏安法记录不同电极对应的还原峰电流。相比于n-c/gce、 pd nps/n-c/gce电极,pd1/n-c/gce具有较高的电流响应,归功于氮掺杂碳载体上负载的原子分散的钯位点具有合适的化学能,提高了与fzd主客体的相互作用,促进了fzd的氧化还原反应。
45.(3)分别配制一系列不同浓度(10-4
~10-2
m)的fzd标准溶液。pd1/n-c修饰于玻碳电极作为工作电极(pd1/n-c/gce),银/氯化银/饱和氯化钾作为参比电极和铂丝电极作为对电极组装三电极体系,置于0.1m磷酸盐缓冲溶液中(ph=7)对不同浓度的fzd进行检测,用循环伏安法(cv)记录不同浓度的fzd对应的峰值电流,根据峰值电流值与fzd标准溶液浓度,绘制标准曲线。如图4a所示,在0.1m pbs中(ph=7)pd1/n-c/gce对不同浓度fzd的cv图,
图4b对应电流对浓度的线型图。从而获得了fzd在0.01~50,50~300μm的浓度范围内具有很好的相关性,最低检测限为3.1nm。
46.实施例3
47.本发明利用pd1/n-c修饰的电极对自来水和湖水中的fzd进行测试:
48.为了评估该传感器在实际水样的可行性,选择自来水和湖水进行分析,研究样品中的fzd。在线性范围内,在自来水和湖水中加入一定量的fzd,用cv记录电化学响应。首先将实际水样先过滤除去悬浮颗粒,随后通过0.22μm滤膜过滤并稀释10倍,接着加入不同浓度的 fzd标准液进行加标回收。该传感可以实现对实际样品的分析。
49.实施例4
50.本发明利用pd1/n-c/gce对检测fzd的干扰性研究:配制50μm fzd溶液,所述干扰物分别为无机离子(k
+
,mg
2+
,zn
2+
),几种抗生素药物:阿莫西林(amx),对乙酰氨基酚(apap),呋喃妥因(net),呋喃西林(nef),左氧氟沙星(lev)和生物样品:尿酸(ua),葡萄糖(glu),抗坏血酸(aa),干扰物的浓度和溶液中fzd的浓度比为1: 1。采用实施例的测试条件,分别将上述溶液加入测试体系,分别记录其峰电流,根据峰电流的变化,考察pd1/n-c/gce的选择性。如图5所示,表明本发明所制备的电极具有较好的选择性。