一种高温水汽处理的pt-pd/cezro2-s双金属催化剂催化氧化芳烃的方法
技术领域
1.本发明涉及催化氧化芳烃的方法,具体涉及一种高温水汽处理的 pt-pd/ce
x
zr
(1-x)o2-s双金属催化剂催化氧化芳烃的方法。
背景技术:2.芳烃通常是指分子中含有苯环的一类有机化合物;同时也是在自然环境中普遍且能持久存在的有毒污染物之一,对生态环境和人体健康都有着较大的伤害。目前,芳烃的降解技术众多,有热焚烧法、等离子体法、生物法和催化氧化法等方法;其中,催化氧化法因具有效率高和无二次污染等优点而成为最受关注同时也是最有前景的芳烃降解技术之一(yang c,miao g,pi y,et al.abatement ofvarious types of vocs by adsorption/catalytic oxidation:a review[j].chemicalengineering journal,2019,370:1128-1153;lee j e,ok y s,tsang d c w,et al. recent advances in volatile organic compounds abatement by catalysis and catalytichybrid processes:a critical review[j].science of the total environment,2020,719: 137405.)。
[0003]
芳烃的催化氧化方法通常是在热焚烧的基础上通过引入催化剂来降低氧化反应所需的活化能。芳烃的催化氧化的核心催化剂主要分为贵金属和非贵金属催化剂两大类;其中,非贵金属催化剂受限于金属本身性质,普遍需要在较高的温度才能完全降解芳烃;而贵金属催化剂则普遍具有低温氧化芳烃的能力,santos 等认为贵金属催化剂催化氧化芳烃的性能排序为:pt》pd>>rh≈ir>>au;因此, pt基催化剂被认为是催化氧化芳烃最理想的催化剂(santos v p,carabineiro s a c, tavares p b,et al.oxidation of co,ethanol and toluene over tio
2 supported noblemetal catalysts[j].applied catalysis b:environmental,2010,99(1):198-205.)。然而,在贵金属催化剂的实际应用过程中,催化剂长时间的工作易导致催化剂失活,从而需要热处理再生;此外,催化剂在使用过程中很多情况下还需要进行升温处理;因此,催化剂的耐久性和耐高温性能具有重要意义;但目前常见的贵金属纳米颗粒催化剂普遍存在恒温稳定性和耐高温性能较差等问题。(zhang y,liu y, xie s,et al.supported ceria-modified silver catalysts with high activity and stabilityfor toluene removal[j].environment international,2019,128:335-42.)因此,开发一种具有高耐久性和高耐热性的芳烃催化氧化催化剂并将其应用于各种芳烃污染物的降解是非常必要的。
技术实现要素:[0004]
针对上述现有技术存在的不足之处,本发明目的在于提供一种高温水汽处理的pt-pd/ce
x
zr
(1-x)o2-s双金属催化剂催化氧化芳烃的方法。
[0005]
为了达成上述目的,本发明的解决方案是:
[0006]
一种高温水汽处理的pt-pd/ce
x
zr
(1-x)o2-s双金属催化剂催化氧化芳烃的方法,其
特征在于:具体包括以下步骤:
[0007]
(1)往铈盐和锆盐混合溶液中加入碱后将所得铈锆氢氧化物在空气中焙烧制得铈锆固溶体,将所得铈锆固溶体记为ce
x
zr
(1-x)
o2,其中x=0~1;
[0008]
(2)将步骤(1)中制得的铈锆固溶体与含pt的前驱体和含pd的前驱体混合后煅烧,将所得催化剂记为pt-pd/ce
x
zr
(1-x)
o2;
[0009]
(3)将步骤(2)中制得的催化剂pt-pd/ce
x
zr
(1-x)
o2进行高温水汽处理,将处理后的催化剂记为pt-pd/ce
x
zr
(1-x)o2-s;
[0010]
(4)将步骤(3)中制得的pt-pd/ce
x
zr
(1-x)o2-s催化剂造粒后放入固定床反应装置中进行芳烃氧化反应,反应原料为由芳烃和空气组成的混合气体,反应压力为常压,反应温度为100~400℃。
[0011]
优选地,步骤(1)中所述的铈盐为硝酸铈、三氯化铈或硫酸铈中的一种;所述的锆盐为硝酸锆、四氯化锆或硫酸锆中的一种。
[0012]
优选地,步骤(1)中所述的碱为氨水、氢氧化钠或碳酸钠中的一种。
[0013]
优选地,步骤(1)中所述的焙烧条件为:焙烧气氛为空气,焙烧温度为300 ~600℃,焙烧时间为2~8h。
[0014]
优选地,步骤(2)中所述的煅烧条件为:煅烧气氛为空气,煅烧温度为400~ 900℃,煅烧时间为2~12h。
[0015]
优选地,步骤(2)中所述的含pt的前驱体选自硝酸铂、氯铂酸或四氨合硝酸铂中的一种;所述的含pd的前驱体选自硝酸钯、氯钯酸或硫酸四氨合钯中的一种。
[0016]
优选地,步骤(3)中所述的高温水汽处理的条件为:温度为300~800℃,水汽处理的时间为1~12h。
[0017]
优选地,步骤(4)中所述的催化剂造粒目数为40~60目。
[0018]
优选地,步骤(4)中所述的芳烃为甲苯或二甲苯中的一种;所述混合气体中芳烃的浓度为0~10000ppm。
[0019]
本发明的设计原理如下:
[0020]
本发明所提供的高温水汽处理的pt-pd/ce
x
zr
(1-x)o2-s双金属催化剂催化氧化芳烃的机理为:首先通过往铈盐和锆盐混合溶液中加入碱使用共沉淀法制备出具有高热稳定性和丰富氧空位的铈锆固溶体作为载体,然后通过共浸渍的方法在载体上负载含pt和pd的前驱体,再通过高温焙烧使金属与载体形成较强的金属
‑ꢀ
载体强相互作用。最后,在对所得催化剂进行高温水汽处理的过程中,水汽在铈锆固溶体表面解离为羟基和质子氢,羟基会占据在pt原子附近的氧空位,而质子氢则会与pt原子附近的晶格氧结合,这样最终会在pt原子的附近形成两个活性羟基,这些活性羟基具有优异的低温氧化性能。此外,通常情况下pt单金属催化剂的耐久性和耐高温性能均较差,而pd引入后,通过pt-pd的协同作用使得最终所制备的催化剂具有优异的耐久性能和耐高温性能。
[0021]
本发明的有益效果:
[0022]
(1)本发明所提供的高温水汽处理的pt-pd/ce
x
zr
(1-x)o2-s双金属催化剂催化氧化芳烃的方法成功实现了在较低温度下和较少催化剂用量的条件下完全催化氧化芳烃。
[0023]
(2)本发明所提供的高温水汽处理的pt-pd/ce
x
zr
(1-x)o2-s双金属催化剂具有优异的耐久性能、耐高温性能和抗水性能,可循环使用多次,这在实际应用中能有效地降低芳烃
降解的成本。
[0024]
(3)本发明所提供的高温水汽处理的pt-pd/ce
x
zr
(1-x)o2-s双金属催化剂催化氧化芳烃的方法还具有操作容易及催化剂制备过程简易的优点,这非常有利于工业化推广。
附图说明
[0025]
图1为芳烃催化氧化反应的装置示意图;
[0026]
图2为双金属催化剂pt-pd/ce
x
zr
(1-x)o2-s的xrd谱图;
[0027]
图3为双金属催化剂pt-pd/ce
x
zr
(1-x)o2-s的活性测试图;
[0028]
图4为双金属催化剂pt-pd/ce
x
zr
(1-x)o2-s的循环测试图;
[0029]
图5为双金属催化剂pt-pd/ce
x
zr
(1-x)o2-s反应24h耐久性测试图;
[0030]
图6为双金属催化剂pt-pd/ce
x
zr
(1-x)o2-s的耐高温测试图;
[0031]
图7为双金属催化剂pt-pd/ce
x
zr
(1-x)o2-s的抗水性能测试图。
具体实施方式
[0032]
下面进一步结合附图和实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,示例中具体的质量、水汽时间和温度、工艺参数等也仅是合适范围中的一个示例,本领域的技术人员根据本发明的上述内容做出的一些非本质的改进和调整均属于本发明的保护范围。实施例中未注明具体技术或条件者,均为按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市场购买的常规产品。
[0033]
图1为本发明实例部分所用的为高温水汽处理的pt-pd/ce
x
zr
(1-x)o2-s双金属催化剂催化氧化芳烃的方法所设计的反应装置的示意图:其中包括氮气瓶、干燥空气瓶、截止阀1、质量流量计1、截止阀2、质量流量计2、截止阀3、质量流量计3、低温恒温槽、鼓泡器、混合罐、反应炉和气相色谱仪(gc);各部分之间的连接方式如图1所示。在芳烃催化氧化反应的装置中:反应原料芳烃放入到位于低温恒温槽中的鼓泡器中;干燥空气分为两路:其中一路通过截止阀3 和质量流量计3进入鼓泡器将芳烃的饱和蒸汽压带出与另一路通过截止阀2和质量流量计2的空气混合稀释;催化剂放置在石英管中(内径为6mm),然后将石英管放入反应炉中即可进行催化反应。最后通过气相色谱检测尾气中残留的芳烃含量,从而计算出芳烃的转化率。
[0034]
实施例1
[0035]
高温水汽处理的pt-pd/ce
x
zr
(1-x)o2-s双金属催化剂催化氧化芳烃的步骤如下:
[0036]
(1)往500ml由硝酸铈(7.35g)和硝酸锆(7.27g)组成的混合溶液中滴加0.1m的氢氧化钠溶液至沉淀完全,将所得铈锆氢氧化物沉淀在空气中400℃焙烧6h得到铈锆固溶体,将所得铈锆固溶体记为ce
x
zr
(1-x)
o2;
[0037]
(2)将1g步骤(1)中制得的铈锆固溶体、10mg硝酸铂和5mg硝酸钯混合后在空气中500℃煅烧6h,将煅烧后的催化剂记为pt-pd/ce
x
zr
(1-x)
o2;
[0038]
(3)将步骤(2)中制得的催化剂进行高温水汽处理,高温水汽处理的温度为500℃,水汽处理的时间为6h,水汽的含量30vol%,将所得的催化剂记为 pt-pd/ce
x
zr
(1-x)o2-s-1。催化剂pt-pd/ce
x
zr
(1-x)
o2和催化剂pt-pd/ce
x
zr
(1-x)o2-s-1 的xrd谱图如图2所示;从图2中
可以看出:pt-pd/ce
x
zr
(1-x)o2-s催化剂的xrd 衍射谱图中,除了ce
x
zr
(1-x)
o2载体的衍射峰之外,并没有观察到归属于pt和pd 的相关衍射峰,说明pt和pd分散良好,没有形成大的纳米颗粒;
[0039]
(4)催化氧化芳烃反应:如图1所示为本发明进行催化氧化芳烃所使用的反应装置的示意图:将甲苯放入到位于低温恒温槽中的鼓泡器中,调节低温恒温槽的温度为10℃,控制原料气的流速为60ml/min,其中甲苯的浓度为1000ppm。将催化剂pt-pd/ce
x
zr
(1-x)o2-s-1造粒至40~60目,然后称取0.2g进行催化反应,先升温至目标温度(目标温度为高于完全转化所需温度10~20℃)稳定1.5h,待甲苯浓度稳定后每次降温10℃测试催化剂的活性,通过气相色谱检测尾气中残留的甲苯含量,从而计算出甲苯的转化率。催化剂的活性测试结果如图3所示:经过高温水汽处理的pt-pd/ce
x
zr
(1-x)o2-s催化剂催化氧化甲苯的所需的t
90
为 147℃。此外,还对催化剂pt-pd/ce
x
zr
(1-x)o2-s-1的稳定性进行了测试,结果如图4所示;从图4中可以看出经过三个循环后催化剂pt-pd/ce
x
zr
(1-x)o2-s-1仍未见失活现象。
[0040]
实施例2
[0041]
高温水汽处理的pt-pd/ce
x
zr
(1-x)o2-s双金属催化剂催化氧化芳烃的步骤参考实施例1,不同之处在于步骤(4)中催化剂的用量为0.08g,催化反应的温度稳定在170℃。反应结果如图5所示:经过高温水汽处理的pt-pd/ce
x
zr
(1-x)o2-s催化剂反应24h后未见失活现象,表现出优异的耐久性能。
[0042]
实施例3
[0043]
高温水汽处理的pt-pd/ce
x
zr
(1-x)o2-s双金属催化剂催化氧化芳烃的步骤参考实施例1,不同之处在于步骤(4)中催化剂的用量为0.08g,催化反应温度为先在170℃反应6h,再升温至300℃反应6h,然后降温至170℃反应6h。按上述步骤依次升温至400和500℃。反应结果如图6所示:催化剂分别经过300和 400℃高温反应后再降温至170℃,活性依然保持稳定,表明该催化剂表现出优异的耐高温性能,但在经历500℃反应后出现了失活现象。
[0044]
实施例4
[0045]
高温水汽处理的pt-pd/ce
x
zr
(1-x)o2-s双金属催化剂催化氧化芳烃的步骤参考实施例1,不同之处在于步骤(4)中催化剂的用量为0.08g,催化反应条件调整如下:反应温度为先在170℃反应6h,再往原料气中通入5vol%的水汽反应6h,最后断开水汽再反应6h。反应结果如图7所示,通入5vol%的水汽后,催化剂的活性未见明显下降,表明本发明所提供的催化剂具有优异的抗水性能。
[0046]
实施例5
[0047]
高温水汽处理的pt-pd/ce
x
zr
(1-x)o2-s双金属催化剂催化氧化芳烃的步骤参考实施例1,不同之处在于将步骤(4)中的甲苯换为二甲苯;催化剂的用量为0.1g,经过高温水汽处理的pt-pd/ce
x
zr
(1-x)o2-s催化剂催化氧化二甲苯的所需的t
90
为 153℃。
[0048]
对比例1
[0049]
将0.5g实施例1中步骤(2)所制备的催化剂pt-pd/ce
x
zr
(1-x)
o2造粒至40~60 目,然后称取0.2g进行催化氧化芳烃反应。催化氧化芳烃反应的步骤参考实施例1中步骤(4)。催化剂的活性测试结果如图3所示:催化剂pt-pd/ce
x
zr
(1-x)
o2催化氧化芳烃的所需的t
90
为297℃。