一种可活化亚硫酸盐降解四环素的光催化剂及其制备方法与应用

文档序号:31784040发布日期:2022-10-12 12:06阅读:1189来源:国知局
一种可活化亚硫酸盐降解四环素的光催化剂及其制备方法与应用

1.本发明属于光催化剂技术领域,具体涉及到一种可活化亚硫酸盐降解四环素的光催化剂及其制备方法与应用。


背景技术:

2.近几十年来,四环素(tcs)已被广泛应用于医学领域,以治疗人类和动物的传染病。而四环素在环境中的残留会滋生多种耐药菌株,这些菌株不能用目前已知的药物治疗,对人类的健康构成了严重威胁。可由于其低的生物降解性,传统的水处理方法无法去除tcs,造成了在表层、饮用水和污泥中能检测到大量的tcs。因此,开发有效的快速降解技术具有重大环境意义。
3.由于硫酸盐自由基在高级氧化过程中较高的氧化还原电位,基于硫酸盐自由基的高级氧化过程(sr-aops)去除tcs的研究被广泛关注。一般来说,so
4-是由热处理、超暴力辐照或过渡金属催化激活过硫酸盐(ps)或过氧单硫酸盐(pms)而产生的。然而,密集的能源输入、ps/pms的高成本和潜在的二次污染限制了其规模的应用,因此,开发新的so
4-产生技术是有必要的。
4.亚硫酸盐(s(iv))作为湿法脱硫工艺的副产品,近年来被发现是一种低成本的、很有前途的so
4-的产生来源。因此,活化亚硫酸盐降解有机污染物成了热门的研究话题。最近研究聚集在通过uv和过渡金属活化s(iv)。但自然界的紫外光较少,过渡金属的直接投加易造成二次污染限制了其应用。
5.而可见光催化是一种降解水中有机污染物,环保,经济的新型方法,并且光生空穴具有足够的能力将亚硫酸盐转化为so
3-,在溶解氧的作用下,so
3-可以通过一系列反应转化为so
4-。so
3-与氧气的产物so
5-和so
4-可以重新转化为so
3-,实现硫氧自由基循环,因此研究人员展开了光催化活化亚硫酸盐去除水中有机污染物的研究现有技术一提出利用半导体bioi和biobr作为光催化剂,使亚硫酸盐多相活化产生活性物质,其他的半导体光催化剂二硫化钼、bivo4、二氧化钛和氮化碳g-c3n4也被用于亚硫酸盐的活化。其中g-c3n4因独特的二维(2d)层状晶体结构、低密度、高热稳定性和易于制造而受到人们的广泛关注。然而,g-c3n4(如=2.7ev)的宽带隙使它可见光吸收有限。调控cn比是一种有效的改性方式,相较之下现有技术二提到一种三唑基氮化碳g-c3n5,其原子排列包括一个三唑和两个三嗪单元,以提高氧还原反应活性,这主要是由于与三氮基g-c3n4相比,三唑π-π共轭和吡咯n位点的电子数量更大。由于富氮部分的和较大的π共轭网络,g-c3n5相比g-c3n4而言拥有更低的带隙(1.7-2.0ev)和更好的可见光吸收,然而这种新型氮化碳的研究还处于起步阶段,关于它活化亚硫酸钠的研究很少。
6.原始的g-c3n5过窄的带隙虽然增强了对可见光的吸收但依然存在和其他单一半导体一样的载流子易复合问题,这严重限制了它活化亚硫酸钠的效率。向半导体材料表面负载过渡金属fe是调控带隙,减少载流子复合,增强电子利用效率的有效方法。然而,fe与c、n
较弱的结合能,容易造成fe在溶液中较多的浸出,降低材料的重复利用价值。


技术实现要素:

7.本发明的目的是提供一种可活化亚硫酸盐降解四环素的光催化剂及其制备方法与应用,通过一锅水热法,使硫作为fe的结合位点,从而将fe成功与g-c3n5复合,形成异质结材料+亚硫酸钠的体系,对四环素有很好的降解效果,并且只有少量的铁溶解出,主要以非均相反应为主。
8.为达上述目的,本发明提供了一种可活化亚硫酸盐降解四环素的光催化剂的制备方法,s1将g-c3n5溶于硫化钠溶液中,加入铁离子溶液超声,得固液混合物;
9.s2将固液混合物加热反应制得复合材料,洗涤并干燥后,制得。
10.进一步地,g-c3n5通过以下方法制备:将3-氨基-1,2,4-三氮唑置于带盖氧化铝坩埚中,移入马弗炉在空气的氛围下,于5℃/min的升温速率加热至480-520℃,并保温2-4h后,冷却研磨制得。
11.进一步地,g-c3n5与硫化钠溶液的比例关系为5g:8-12ml,硫化钠溶液的浓度为0.1-0.3mol/l。
12.进一步地,铁离子溶液的浓度为0.05-0.2mol/l,铁离子溶液与硫化钠溶液的体积比为1:1。
13.进一步地,加热反应的温度为150-180℃,加热反应的时间为10-15h,干燥的温度为75-85℃。
14.进一步地,本发明还公开了采用上述可活化亚硫酸盐降解四环素的光催化剂的制备方法制备得到的可活化亚硫酸盐降解四环素的光催化剂。
15.本发明还公开了采用上述可活化亚硫酸盐降解四环素的光催化剂在光催化上的应用,与亚硫酸钠和可见光构成降解体系,对四环素进行降解。
16.综上所述,本发明具有以下优点:
17.1、本发明通过一锅水热法,引入s,借助s和c、n、fe都能较为稳定成键的特点,使硫作为fe的结合位点,从而将fe成功与g-c3n5复合,合成了新型异质结材料,并从能带和载流子的角度解释了材料在可见光(vis)下能高效活化亚硫酸盐的原因和可见光(vis)-亚硫酸盐-fes2/cn体系下降解tc的一系列反应机理。
18.2、本发明制备的光催化剂材料对四环素有很好的降解效果,并且只有少量的铁溶解出,主要以非均相反应为主。以光催化材料(异质结材料)+亚硫酸钠+可见光形成的降解体系具有很好的稳定性和ph适应性。
附图说明
19.图1为试验例1中光催化试验的各个试验结果;
20.图2为不加入g-c3n5后合成材料的xrd衍射图;
21.图3为fes2/cn-2的sem形貌图;
22.图4为fes2/cn-1和fes2/cn-3的sem形貌图;
23.图5为fes2/cn-2的tem、sade和eds图;
24.图6为fes2/cn-2循环使用的降解图。
具体实施方式
25.值得说明一下的是,铁掺杂的材料有很多,但实际进行降解的时候由于c3n4或者c3n5这类型的材料,和fe的结合很弱,所以会导致铁溶解于溶液中,而其降解的效果可能很大部分来源于溶解在水中的铁。也就是常说的均相反应过程。但本发明起点认为溶解出的铁也有潜在的二次污染,因此本发明中提供的硫元素起到提高将铁与c3n5稳定结合的作用,使铁的溶解很少,降解四环素的反应也主要发生在材料表面,也就是非均相反应过程。
26.因此本发明合成的光催化剂材料借助g-c3n5对可见光的良好吸收,将它作为基底材料,把铁成功的与它结合,构成一种新型异质结材料。使吸收到可见光后产生的光生电子,光生空穴(光生载流子)传递到材料表面,材料表面的fes2提供了更多的反应位点,使光生电子,光生空穴得以被充分利用,参与到降解过程中。而原本的g-c3n5就是由于表面缺乏反应位点,使得光生载流子虽然产生了,但根本未被利用就以热的形式浪费掉了。
27.以下结合实施例对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
28.实施例1
29.本例提供了一种可活化亚硫酸盐降解四环素的光催化剂的制备方法,包括以下步骤:
30.(1)基底材料的合成:将8g 3-氨基-1,2,4-三氮唑(3-amino-1,2,4-triazole)放入带盖氧化铝坩埚中,然后移入马弗炉在空气的氛围下500℃热处理3h,升温速率为5℃/min。该产物经过自然冷却,研磨后标记为g-c3n5或cn。
31.(2)fes2/cn-2的合成:将5g g-c3n5加入10ml的0.2mol/lna2s溶液,并加入10ml fecl3溶液(0.1mol/l),超声30min。将所得固液混合物转移至50ml的聚四氟乙烯高压反应釜中,在160℃加热12h,最后,用去离子水充分洗涤所得复合材料,以除去未反应的试剂和杂质,最后在80℃烘箱中干燥。得到的产物被命名为fes2/cn-2。
32.实施例2
33.本例提供了一种可活化亚硫酸盐降解四环素的光催化剂的制备方法,包括以下步骤:
34.(1)基底材料的合成:将8g 3-氨基-1,2,4-三氮唑(3-amino-1,2,4-triazole)放入带盖氧化铝坩埚中,然后移入马弗炉在空气的氛围下500℃热处理3h,升温速率为5℃/min。该产物经过自然冷却,研磨后标记为g-c3n5或cn。
35.(2)fes2/cn-1的合成:将5g g-c3n5加入10ml的0.2mol/lna2s溶液,并加入10ml的fecl3溶液(0.05mol/l),超声30min。将所得固液混合物转移至50ml的聚四氟乙烯高压反应釜中,在160℃加热12h,最后,用去离子水充分洗涤所得复合材料,以除去未反应的试剂和杂质,最后在80℃烘箱中干燥。得到的产物被命名为fes2/cn-1。
36.实施例3
37.本例提供了一种可活化亚硫酸盐降解四环素的光催化剂的制备方法,包括以下步骤:
38.(1)基底材料的合成:将8g 3-氨基-1,2,4-三氮唑(3-amino-1,2,4-triazole)放入带盖氧化铝坩埚中,然后移入马弗炉在空气的氛围下500℃热处理3h,升温速率为5℃/
min。该产物经过自然冷却,研磨后标记为g-c3n5或cn。
39.(2)fes2/cn-3的合成:将5g g-c3n5加入10ml的0.2mol/lna2s溶液,并加入10ml的fecl3溶液(0.2mol/l),超声30min。将所得固液混合物转移至50ml的聚四氟乙烯高压反应釜中,在160℃加热12h,最后,用去离子水充分洗涤所得复合材料,以除去未反应的试剂和杂质,最后在80℃烘箱中干燥。得到的产物被命名为fes2/cn-3。
40.对比例1
41.本对比例与实施例1不同的,不加g-c3n5,只加10ml的0.2mol/l na2s溶液和0.1mol/l fecl3溶液得到少量固体,将其标记为fes2。
42.试验例
‑‑‑
光催化试验
43.通过使用氙灯(dy300g,广州星创电子有限公司)和400nm截止滤光片模拟可见光照,并在催化剂浓度为1g/l,na2so3浓度为40mg/l的条件下对20mg/l的tc进行降解。
44.在一个典型的实验中,将fes2/cn-2(1.0g/l)加入含tc(20mg/l)的双去离子水中。悬浮液在黑暗中连续搅拌30min达到吸附解析平衡。之后在溶液中加入40mg/l的na2so3,并用0.1mmol/l盐酸和氢氧化钠调节溶液ph,反应溶液的总体积控制在40ml。然后将悬浮液在氙灯的照射下连续搅拌,开始对tc进行降解。一定时间后,将悬浮液离心,取清液,通过在紫外可见分光光度计357nm波长下检测吸光度确定tc浓度。
45.如图1所示,其中图1(a)为在光照条件下和都加亚硫酸钠的情况下,g-c3n5,fes2/cn-1和fes2/cn-2、fes2/cn-3各自四环素的降解效果。单独的fes2在实验中以水热法在没有基底材料g-c3n5的时候是不能成功合成的(因此图1中并没有单独的fes2),在光催化过程中直接就溶于水了,这也说明加入g-c3n5的重要性,在水热合成中,fes2可能是在g-c3n5上原位生长的,所以就没有fes2的降解数据。图1(b)为fes2/cn-1和fes2/cn-2、fes2/cn-3、硫单质和未掺杂铁离子的材料降解四环素的反应常数,可以看出,实施例1制备的fes2/cn-2是效果最好的材料。图1(c)为说明fes2/cn-2加亚硫酸钠对四环素的降解过程主要是非均相过程,我们测了在反应1小时后溶液中铁的溶出浓度为1.23mg/l,主要为2价铁,之后用硫酸亚铁溶液加亚硫酸钠模拟实际降解中的均相过程,如蓝色的线条,它很微弱,说明均相反应占比很少。图1(d)为fes2/cn-2在ph为3-11间的降解效果,可以发现,在ph为5-9之间均具有很好的降解效果,说明本发明提供的可见光(vis)-亚硫酸盐-fes2/cn体系,这种降解体系具有很好的稳定性和ph适应性。
46.如图2所示,该材料即为对比例1合成的fes2的xrd衍射图,从图2可以看出,在没有g-c3n5的情况下合出来的材料,可以证明主要成分可能是一些氯化钠和少量fe杂质。x射线衍射(xrd)分析是在x射线粉末衍射仪(日本rigaku smartlab)上使用5到90度,40kv,40ma,铜靶,步长0.02度进行的。用x射线光电子能谱仪(美国thermofischer,escalab 250xi)进行测试,分析化学成分和价带(vb)。
47.试验例2
‑‑‑
材料表征
48.(1)通过扫描电子显微镜sem(zeiss merlin compact)和透射电子显微镜tem(fei talos f200s)对形貌进行了表征。
49.(2)对于光电流(pc)测量,使用截止波长为400nm的300w氙灯作为光源,铁氰化钾溶液(2.5mmol/l)作为电解液。使用标准三电极电池,ito涂层导电玻璃电极作为工作电极,铂电极作为辅助电极,标准ag/agcl作为参比电极。称取10mg粉末样品分散在1ml超纯水溶
液中,再加入50ul nafion溶液,超声30分钟形成均匀悬浮液,然后在ito玻璃上滴加150ul悬浮液,室温下晾干进行光电测试。在室温下用英国edinburgh fls1000记录激发波长为280nm的光致发光pl光谱。通过顺磁共振(国仪量子ciqtek epr200-plus)测定了活性物种。
50.如图3所示,通过sem对材料的形貌进行了表征,图3(a)中g-c3n5具有典型的片状结构,能观察到光滑片层的堆叠。通过图3(b)(1μm)能观察到块状fes2负载在cn片层上,而图3(c)(200nm)依然有明显的片层堆积,这说明fes2/cn-2的石墨化结构没有被破坏。图3(d)与图3(c)拍摄角度不同,可以看出与此同时片层表面变得更加粗糙。图3(e)为fes2/cn-2对应的元素分析图,s和fe集中于块状颗粒,而c、n、o广泛分布于片层上,进一步证明了fes2/cn的复合结构。
51.图4为实施例2-3的材料的1μm(左)和200nm(右)的sem图。
52.为了提取精细的形态学特征,对g-c3n5和fes2/cn-2样品做了高分辨率透射电子显微镜(hr-tem)。如图5所示,图5(a)为cn的tem图像,图5(b)和图5(d)为fes2/cn-2不同倍数的tem图像,图5(c)为fes2/cn-2的sade图像,图5(e)为fes2/cn-2的eds图像。其中图5(a)可以看到g-c3n5连续的晶格条纹,0.32nm的晶面间距对应(002)面。图5(b),进一步地,在高倍数图像中能找到fes2晶面间距为0.27nm的(200)晶面和g-c3n5的晶格条纹,这标志着g-c3n5和fes2形成了异质结,而fes2/cn-2中属于g-c3n5的晶格条纹相较图5(a)而言不连续,这是由于fes2在g-c3n5晶面生长过程中的挤压造成的。图5(c)中fes2/cn-2的电子衍射图(saed)中的三个衍射环分别对应fes2的(111)(220)(210)晶面,表明了其高结晶性。图5(d)能观察到片层结构和立方体的结合,并且图5(e)tem eds的s,fe元素主要分布在立方体形貌上,这也与sem eds图表征结果相吻合。
53.试验例3
‑‑‑
循环试验
54.对实施例2制备的fes2/cn-2进行循环使用的试验,具体步骤为:
55.将材料fes2/cn-2进行前文叙述的光催化实验后将材料从溶液中回收,进行干燥后再进行光催化实验。一共重复五次。
56.如图6所示,其在循环5次之后依旧保持良好的降解性能,说明本发明制备的光催化剂材料不是一次性材料,具有稳定性。
57.虽然对本发明的具体实施方式进行了详细地描述,但不应理解为对本专利的保护范围的限定。在权利要求书所描述的范围内,本领域技术人员不经创造性劳动即可作出的各种修改和变形仍属本专利的保护范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1