本发明涉及石蜡加氢脱硫精制工艺,具体涉及一种采用特定催化剂进行的石蜡加氢精制工艺。
背景技术:
石蜡是石油加工产品的一种,是从原油蒸馏所得的润滑油馏分经溶剂精制、溶剂脱蜡或经蜡冷冻结晶、压榨脱蜡制得蜡膏,再经溶剂脱油、精制而得的片状或针状结晶。
石蜡分为食品蜡、全精炼石蜡、半精炼石蜡、粗蜡、火柴蜡和黑蜡等大类。石蜡分成许多品级出售,主要区别是熔点不同。根据用途的不同,对石蜡的质量要求不同。由于来自石油的粗蜡含有硫等众多杂质,因此其不能直接作为产品使用,需要经过精制工艺,以在保持产品的熔点、油含量、针入度等特性指标基本不变的同时实现产品的深度精制,精制的深度应符合下述要求:①将硫、氮、氧的非烃类化合物加氢,脱除其中的硫、氮和氧;②将烯烃、芳烃特别是稠环芳烃加氢饱和;③尽量减少发生C-C键断裂生成小分子的裂解反应,避免加氢石蜡含油量增加。
而在众多石蜡精制工艺中,石蜡加氢精制工艺由于其能在保持原料油分子骨架结构不发生改变或者变化很小的情况下,将杂质脱除,达到改变油品吃了的目的,因此得到广泛的应用。截止到2005年,我国国内正常运转的石蜡加氢精制生产装置的设计能力接近1.3Mt/a,其中单套装置最大加工量为150kt/a。
随着世界原油的重质化、劣质化日益加深,原油含硫量越来越高,高品质的轻质原油在不断减少。近年来炼厂加工的原油多为进口原油,相对密度逐年增高,本世纪初几年内全球炼厂加工原油的平均密度上升到0.8633左右。含硫量高的问题也十分严重,目前世界上含硫原油和高硫原油的产量占世界原油总产量的75%以上。20世纪90年代中期全球炼厂加工的原油平均含硫量为0.9%,本世纪初已经上升到1.6%。
目前的石蜡加氢精制工艺,与馏分油加氢精制类似,一般包括原料预处理、加氢反应及生成物后处理三大部分。原料蜡一般经过滤、脱气等预处理,脱除原料中携带的杂质、微量水、溶剂和溶解的气态氧等,再与氢气混合、加热进入反应器,进行加氢精制反应。反应产物分别在高压和低压分离器内进行气液分离,再经汽提、干燥和过滤得到成品蜡。
然而现有的石蜡加氢精制工艺均是针对以前的优质清油设置的。对于目前的高硫含量原油生产得到的原料蜡,由于其高硫含量,其采用的催化剂及加氢条件都难以适用。
因此如何提供石蜡精制工艺,能有效将高硫含量的原料石蜡中的硫含量控制在10ppm以下,以满足标准,是本领域面临的一个难题。
技术实现要素:
本发明的目的在于提出一种石蜡加氢脱硫精制工艺,该工艺可以将石蜡中的总硫含量降低到10ppm以下,以满足排放和腐蚀标准。
为达此目的,本发明采用以下技术方案:
一种石蜡加氢精制工艺,所述工艺采用固定床反应器,固定床反应器中装填有加氢催化剂,所述催化剂包括载体和活性组分。
所述载体为合成骨架结构中掺入杂原子Co2+的KIT-1。
所述活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合物。
所述固定床反应器的反应条件为:反应温度为250-300℃,氢分压为2.8-3.6MPa,氢蜡体积比150-300,体积空速0.6-2.0h-1。
KIT-1分子筛具有一维孔道彼此交叉形成三维无序结构,该结构有利于催化、吸附过程中的物质传递。纯硅介孔分子筛KIT-1具有比MCM-241、HMS更好的热稳定性和水热稳定性。本发明经过在众多介孔材料中,比如KIT-1、KIT-6、MCM-22、MCM-36、MCM-48、MCM-49、MCM56等,进行对比试验选择,发现只有KIT-1能够达到本发明的发明目的,其他介孔材料都有这样那样的缺陷,在应用到本发明中时存在难以克服的技术困难,因此本发明选择用KIT-1作为载体基础。
纯硅KIT-1介孔分子筛水热性能尽管已经很出色,但发明人研究以后发现,其加入杂原子或表面经化学修饰后,其水热稳定性得到更大提高。因此,本发明对其进行改性,以增加其催化活性。本发明对KIT-1介孔分子筛改性的途径是:在KIT-1合成过程中,加入Co2+盐溶液,在KIT-1分子筛骨架结构形成之前,通过同晶取代将Co2+替换部分骨架元素从而嵌入分子筛的骨架中,在整体上改善了KIT-1介孔分子筛的催化活性、吸附以及热力学稳定性能等。
尽管对KIT-1介孔分子筛进行改性的方法或途径很多,发明人发现,本发明的催化剂只能采用掺杂Co2+的KIT-1作为载体才能实现硫含量控制与辛烷值损失的平衡,发明人尝试了在KIT-1中掺杂:Al3+、Fe3+、Zn2+、Ga3+等产生阴离子表面中心的离子,发现都不能实现所述效果。与发明人另一改性途径通过离子交换将Cu2+负载在KIT-1孔道内表面相比,本发明的同晶取代途径更为稳定。尽管所述机理目前并不清楚,但这并不影响本发明的实施,发明人根据已知理论与实验证实,其与本发明的活性成分之间存在协同效应。
所述Co2+在KIT-1中的掺杂量必须控制在特定的含量范围之内,其掺杂量以重量计,为KIT-1重量的0.56%-0.75%,例如0.57%、0.58%、0.59%、0.6%、0.61%、0.62%、0.63%、0.64%、0.65%、0.66%、0.67%、0.68%、0.69%、0.7%、0.71%、0.72%、0.73%、0.74等。
发明人发现,在该范围之外,会导致石蜡脱硫效果的急剧降低。更令人欣喜的是,当Co2+在KIT-1中的掺杂量控制在0.63%-0.72%范围内时,其脱硫能力最强,当绘制以Co2+掺杂量为横轴,以目标脱硫效果为纵轴的曲线图时,该含量范围内硫含量能控制在极低的范围之内,其产生的脱硫效果远远超出预期,属于预料不到的技术效果。
所述活性组分的总含量为载体KIT-1重量的1%-15%,优选3-12%,进一步优选5-10%。例如,所述含量可以为2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%等。
本发明中,特别限定活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合比例,发明人发现,不同的混合比例达到的效果完全不同。发明人发现,氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合比例(摩尔比)为1:(0.4-0.6):(0.28-0.45):(0.8-1.2),只有控制氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的摩尔比在该范围内,才能够实现石蜡中含硫量控制在10ppm以下且脱氮能力显著。也就是说,本发明的四种活性组分只有在摩尔比为1:(0.4-0.6):(0.28-0.45):(0.8-1.2)时,才具备协同效应。除开该摩尔比范围之外,或者省略或者替换任意一种组分,都不能实现协同效应。
优选的,氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的摩尔比为1:(0.45-0.5):(0.35-0.45):(0.8-1.0),进一步优选为1:(0.45-0.48):(0.4-0.45):(0.9-1.0),最优选1:0.48:0.42:0.95。
所述催化剂的制备方法可以采取常规的浸渍法以及其他替代方法,本领域技术人员可以根据其掌握的现有技术自由选择,本发明不再赘述。本发明典型但非限制性的实例如下:
将硅酸钠、十六烷基三甲基溴化铵(CTAB)、乙二胺四乙酸钠(EDTA)和蒸馏水按摩尔比1:0.25:1:60的比例混合,搅拌均匀后装入带有聚四氟乙烯内衬的压力釜中,在373K下恒温24h,重复调节混合物的pH为10.5,恒温4次后,取出产品,用蒸馏水反复洗涤至滤液的pH=7,然后373K下恒温过夜,得到带有表面活性剂的KIT-1。将带有表面活性剂的KIT-1在523K下焙烧1.5h,然后在813K下空气气氛中焙烧6h,得到KIT-1粉体。将该粉体用0.1mol/L的硝酸溶液进行酸洗(控制固液比为1:10),室温下搅拌0.5h,过滤,用蒸馏水洗涤至滤液的pH=7,373K下烘干得到基体KIT-1分子筛。
优选的,所述固定床反应器的反应条件为:反应温度为260-280℃,氢分压为2.8-3.0MPa,氢蜡体积比150-200,体积空速1.0-1.5h-1。
优选的,所述工艺流程包括,原料经过滤器、缓冲罐后,由进料泵泵入换热器与成品换热,换热后与循环氢和新氢混合形成氢蜡混合物,再次与反应产物换热后进入加热炉,加热到反应温度进入加氢精制反应器(固定床反应器),在反应器中氢蜡混合物在催化剂作用下,进行加氢脱硫、脱氮、脱氧、烯烃饱和及芳烃饱和等反应,反应产物经换热,再经水冷至预定温度,进入高压分离器,高压分离器顶部气相作为循环氢返回循环氢缓冲罐,油相进入低压分离器,低压分离器底部引出的生成油与反应产物换热后进入汽提塔,塔顶油气经空冷、水冷后进入分液罐得到石脑油,汽提塔底得到石蜡。
优选的,所述固定床反应器包括1-5个催化剂床层,进一步优选2-3个催化剂床层。
本发明的加氢精制工艺通过选取特定的催化剂,所述催化剂通过掺入杂原子Co2+的KIT-1作为载体,以及选取特定比例的氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC作为活性成分,使得该催化剂产生协同效应,对石蜡的加氢脱硫能控制在总硫含量低于5ppm,同时对石蜡中的总氮含量控制在10ppm之内。
具体实施方式
本发明通过下述实施例对本发明的加氢精制工艺进行说明。
实施例1
通过浸渍法制备得到催化剂,载体为掺杂Co2+的KIT-1,Co2+在KIT-1中的掺杂量控制在载体质量的0.65%。所述活性组分氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的总含量为载体质量的10%,其摩尔比为1:0.4:0.3:0.8。
将所述催化剂装填入固定床反应器,所述反应器的反应管由内径50mm的不锈钢制成,催化剂床层设置为3层,催化剂床层温度用UGU808型温控表测量,原材料石蜡由北京卫星制造厂制造的双柱塞微量泵连续输送,氢气由高压气瓶供给并用北京七星华创D07-11A/ZM气体质量流量计控制流速,催化剂装填量为2kg。反应后的产物经水浴室温冷却后进行气液分离。
所用原料为原料蜡,其总硫含量561ppm,碱性氮含量为258ppm。
控制反应条件为:温度270℃,氢分压3.0MPa,氢蜡体积比200,体积空速1.5h-1。
测试最终的产品,总硫含量降低到2ppm,总碱性氮含量降低到9ppm。
实施例2
通过浸渍法制备得到催化剂,载体为掺杂Co2+的KIT-1,Co2+在KIT-1中的掺杂量控制在载体质量的0.7%。所述活性组分氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的总含量为载体质量的10%,其摩尔比为1:0.6:0.45):1.2。
其余条件与实施例1相同。
测试最终的产品,总硫含量降低到4ppm,总碱性氮含量降低到7ppm。
对比例1
将实施例1的载体替换为γ-Al2O3,其余条件不变。
测试最终的产品,总硫含量降低到32ppm,总碱性氮含量降低到45ppm。
对比例2
将实施例1的载体替换为未掺杂的KIT-1,其余条件不变。
测试最终的产品,总硫含量降低到36ppm,总碱性氮含量降低到48ppm。
对比例3
将实施例1的Co2+替换为Zn2+,其余条件不变。
测试最终的产品,总硫含量降低到40ppm,总碱性氮含量降低到55ppm。
对比例4
将实施例1中的Co2+在KIT-1中的掺杂量控制在载体质量的0.5%,其余条件不变。
测试最终的产品,总硫含量降低到39ppm,总碱性氮含量降低到47ppm。
对比例5
将实施例1中的Co2+在KIT-1中的掺杂量控制在载体质量的0.8%,其余条件不变。
测试最终的产品,总硫含量降低到40ppm,总碱性氮含量降低到57ppm。
实施例1与对比例1-5表明,本申请采用的特定含量范围和特定负载金属离子的KIT-1载体,当替换为本领域的其他已知载体时,或者载体相同但Co2+掺杂量不同时,均达不到本发明的技术效果,因此本发明的特定含量范围的Co2+掺杂KIT-1载体与催化剂其他组分之间具备协同效应,所述加氢精制工艺产生了预料不到的技术效果。
对比例6
省略实施例1中的MO2N,其余条件不变。
测试最终的产品,总硫含量降低到51ppm,总碱性氮含量降低到66ppm。
对比例7
省略实施例1中的WC,其余条件不变。
测试最终的产品,总硫含量降低到52ppm,总碱性氮含量降低到63ppm。
上述实施例及对比例6-7说明,本发明的加氢精制工艺的催化剂几种活性组分之间存在特定的联系,省略或替换其中一种或几种,都不能达到本申请的特定效果,证明其产生了协同效应。
申请人声明,本发明通过上述实施例来说明本发明的工艺,但本发明并不局限于上述工艺,即不意味着本发明必须依赖上述详细催化剂才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。