一种中低温煤焦油加氢精制工艺的制作方法

文档序号:11835061阅读:227来源:国知局

本发明涉及一种中低温煤焦油加氢脱硫精制工艺,具体涉及一种采用特定催化剂进行的一种中低温煤焦油加氢脱硫精制工艺。



背景技术:

煤焦油是炼焦工业煤热解生成的粗煤气中的产物之一,其产量约占装炉煤的3%~4%在常温常压下其产品呈黑色粘稠液状。煤焦油是煤化学工业的主要原料,其成分达上万种,主要含有苯、甲苯、二甲苯、萘、蒽等芳烃,以及芳香族含氧化合物(如苯酚等酚类化合物),含氮、含硫的杂环化合物等多种有机物,可采用分馏的方法把煤焦油分割成不同沸点范围的馏分。根据煤热加工过程的不同,所得到的煤焦油通常被分为高温焦油(900℃~1000℃)、中温焦油(650℃~900℃)和低温焦油(450℃~650℃)。

我国是产煤大国,有着丰富的煤焦油资源,煤焦油作为生产兰炭、焦炭和煤气化的副产品,目前年产约1500万吨,除部分高温煤焦油用于提取化工产品外,多数煤焦油没有得到合理的利用,大部分中低温煤焦油和少量高温煤焦油被作为燃料进行粗放燃烧。因煤焦油中含有大量的芳香族等环状结构化合物,较难充分燃烧,同时煤焦油含碳量高,含氢量低,燃烧时更容易生成炭黑,致使燃烧不完全并产生大量的烟尘。另外,由于煤焦油中硫和氮的含量较高,燃烧前又没有进行脱硫脱氮处理,所以在燃烧时排放出大量的SOx和NOx,造成严重的环境污染,与当前全球大力提倡的绿色环保能源的潮流背道而驰。如果将这部分煤焦油通过催化加氢制成高清洁的燃料油(汽油和柴油),不仅能够提高煤焦油的利用价值,大大减少环境污染,还可以每年为国家新增国民生产总值300多亿元。

中低温煤焦油的组成和性质不同于高温煤焦油,中低温煤焦油中含有较多的含氧化合物及链状烃,其中酚及其衍生物质量含量可达10%~30%,烷状烃大约20%,同时重油(焦油沥青)的含量相对较少,比较适合采用加氢技术生产清洁燃料油。中低温煤焦油(以下“煤焦油”即“中低温煤焦油”)从外观上看,是黑色黏稠液体,密度略小于1000kg/m3,黏度大,具有特殊的气味,其主要组成是芳香族化合物,且大多数是两环以上的稠环芳香族化合物。

进入21世纪,我国焦化工业迅速发展,产生大量的高温煤焦油和生产兰炭所产生的大量中低温煤焦油。一些研究单位开始研究通过催化加氢把煤焦油做成清洁的燃料油(如汽油和柴油)。煤炭科学研究总院和中国石油化工股份有限公司齐鲁分公司曾将煤气化焦油及高温煤焦油经过脱除水分、机械杂质和沥青预处理,再进行深度的加氢精制和重质油馏分的加氢裂化小试实验。

而对于中低温煤焦油催化加氢制备清洁燃料油的研究报道较少,国外对煤焦油的催化加氢的研究多是以煤焦油中的某一个或一类化合物的加氢反应为模型,研究其加氢过程中所包含的复杂化学反应,包括对萘、蒽油和菲等的加氢裂化反应都有研究。

然而现有的煤焦油加氢过程包括脱除焦油中含有的硫、氮、氧等杂原子,使不饱和化合物通过加氢反应增强稳定性以及重质组分加氢裂化生成轻芳烃的过程。该工艺过程会使大量的高经济价值的芳烃裂化,影响产品收益。

因此如何提供中低温煤焦油精制工艺,能有效将中低温煤焦油中的硫含量控制在5ppm以下,并减少芳烃的裂化,是本领域面临的一个难题。



技术实现要素:

本发明的目的在于提出一种中低温煤焦油加氢脱硫精制工艺,该工艺可以将中低温煤焦油中的总硫含量降低到5ppm以下,并减少芳烃的裂化,以满足后续加工标准。

为达此目的,本发明采用以下技术方案:

一种中低温煤焦油加氢精制工艺,所述工艺采用固定床反应器,固定床反应器中装填有加氢催化剂,所述催化剂包括载体和活性组分。

所述载体为MSU-G、SBA-15和HMS的复合物或混合物。

所述活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合物。

所述的催化剂还含有催化助剂,所述催化助剂为TiO2、CeO2、V2O5和NbOPO4的混合物。

所述固定床反应器的反应条件为:反应温度为300-420℃,氢分压为13-15MPa,氢油体积比800-1200,体积空速0.3-0.8h-1

本发明的目的之一就在于,提供一种3种不同介孔分子筛的复合以表现出协同效应和特殊催化性能,所述协同效应表现在脱硫精制方面,而特殊的催化性能则是表现在对催化剂的使用寿命及催化活性的提高上。

在催化剂领域,根据国际纯粹与应用化学协会(IUPAC)的定义,孔径小于2nm的称为微孔;孔径大于50nm的称为大孔;孔径在2到50nm之间的称为介孔(或称中孔)。介孔材料是一种孔径介于微孔与大孔之间的具有巨大比表面积和三维孔道结构的新型材料,它具有其它多孔材料所不具有的优异特性:具有高度有序的孔道结构;孔径单一分布,且孔径尺寸可在较宽范围变化;介孔形状多样,孔壁组成和性质可调控;通过优化合成条件可以得到高热稳定性和水热稳定性。

但在目前的应用中,所述介孔材料在用于催化领域时,都是单独使用,比如MCM系列,如MCM-22、MCM-36、MCM-41、MCM-48、MCM-49、MCM56,比如MSU系列,如MSU-1、MSU-2、MSU-4、MSU-X、MSU-G、MSU-S、MSU-J等,以及SBA系列,如SBA-1、SBA-2、SBA-3、SBA-6、SBA-7、SBA-8、SBA-11、SBA-15、SBA-16等,以及其他的介孔系列等。

少数研究文献研究了两种载体的复合,比如Y/SBA-15、Y/SAPO-5等,多数是以介孔-微孔复合分子筛和微孔-微孔复合分子筛为主。采用3种不同介孔分子筛的复合以表现出协同效应和特殊催化性能的研究,目前尚未见报导。

本发明的催化剂载体是MSU-G、SBA-15和HMS的复合物或混合物。所述复合物或混合物中,MSU-G、SBA-15和HMS的重量比为1:(0.8-1.2):(0.4-0.7),优选为1:(1-1.15):(0.5-0.7)。

本发明采用的MSU-G、SBA-15和HMS介孔分子筛均是催化领域已有的分子筛,其已经在催化领域获得广泛研究和应用。

MSU-G是一种具有泡囊结构状粒子形态和层状骨架结构的介孔分子筛,其具有高度的骨架交联和相对较厚的骨架壁而具有超强的热稳定性和水热稳定性,其骨架孔与垂直于层和平行于层的孔相互交联,扩散路程因其囊泡壳厚而很短。MSU-G分子筛的囊泡状粒子形态方便试剂进入层状骨架的催化中心,其催化活性很高。

SBA-15属于介孔分子筛的一种,具有二维六方通孔结构,具有P3mm空间群。在XRD衍射图谱中,主峰在约1°附近,为(10)晶面峰。次强峰依次为(11)峰以及(20)峰。其他峰较弱,不易观察到。此外,SBA-15骨架上的二氧化硅一般为无定形态,在广角XRD衍射中观察不到明显衍射峰。SBA-15具有较大的孔径(最大可达30nm),较厚的孔壁(壁厚可达6.4nm),因而具有较好的水热稳定性。

六方介孔硅HMS具有长程有序而短程相对无序的六方介孔孔道,其孔壁比HCM41S型介孔材料更厚,因而水热稳定性更好,同时短程相对无序的组织结构及孔径调变范围更大,使HMS材料具有更高的分子传输效率和吸附性能,适宜于作为大分子催化反应的活性中心。

本发明从各个介孔材料中,进行复合配对,经过广泛的筛选,筛选出MSU-G、SBA-15和HMS的复合或混合。发明人发现,在众多的复合物/混合物中,只有MSU-G、SBA-15和HMS三者的复合或混合,才能实现加氢精制效果的协同提升,并能够使得催化活性长期不降低,使用寿命能够大大增加。换言之,只有本发明的MSU-G、SBA-15和HMS三者的特定复合或混合,才同时解决了协同和使用寿命两个技术问题。其他配合,要么不具备协同作用,要么使用寿命较短。

所述复合物,可以采用MSU-G、SBA-15和HMS三者的简单混合,也可以采用两两复合后的混合,比如MSU-G/SBA-15复合物、MSU-G/HMS和SBA-15/HMS复合物的混合。所述复合可以采用已知的静电匹配法、离子交换法、两步晶化法等进行制备。这些介孔分子筛和其复合物的制备方法是催化剂领域的已知方法,本发明不再就其进行赘述。

本发明中,特别限定活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合比例,发明人发现,不同的混合比例达到的效果完全不同。发明人发现,氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合比例(摩尔比)为1:(0.4-0.6):(0.28-0.45):(0.8-1.2),只有控制氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的摩尔比在该范围内,才能够实现中低温煤焦油中含硫量控制在10ppm以下且脱氮能力显著。也就是说,本发明的四种活性组分只有在摩尔比为1:(0.4-0.6):(0.28-0.45):(0.8-1.2)时,才具备协同效应。除开该摩尔比范围之外,或者省略或者替换任意一种组分,都不能实现协同效应。

优选的,氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的摩尔比为1:(0.45-0.5):(0.35-0.45):(0.8-1.0),进一步优选为1:(0.45-0.48):(0.4-0.45):(0.9-1.0),最优选1:0.48:0.42:0.95。

所述活性组分的总含量为载体重量的1%-15%,优选3-12%,进一步优选5-10%。例如,所述含量可以为2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%等。

本发明的目的之一还在于提供所述催化剂的助催化剂。本发明所述的催化剂还含有催化助剂,所述催化助剂为TiO2、CeO2、V2O5和NbOPO4(磷酸铌)的混合物。

尽管在加氢精制特别是加氢脱硫领域,已经有成熟的催化助剂,比如P、F和B等,其用于调节载体的性质,减弱金属与载体间强的相互作用,改善催化剂的表面结构,提高金属的可还原性,促使活性组分还原为低价态,以提高催化剂的催化性能。但上述P、F和B催化助剂在应用与本发明的载体与活性组分时,针对高硫组分,其促进催化脱硫/精制的作用了了。

本发明经过在众多常用助催化剂组分,以及部分活性组分中进行遴选、复配等,最终发现采用TiO2、CeO2、V2O5和NbOPO4(磷酸铌)的混合物对本发明的催化剂促进作用明显,能显著提高其水热稳定性,并提高其防结焦失活能力,从而提高其使用寿命。

所述TiO2、CeO2、V2O5和NbOPO4之间没有固定的比例,也就是说,TiO2、CeO2、V2O5和NbOPO4每一种各自的含量达到有效量即可。优选的,本发明采用的TiO2、CeO2、V2O5和NbOPO4各自的含量均为(分别为)载体质量的1-7%,优选2-4%。

尽管本发明所述的催化助剂之间没有特定的比例要求,但每一种助剂必须能够达到有效量的要求,即能够起到催化助剂作用的含量,例如载体质量的1-7%。本发明在遴选过程中发现,省略或者替换所述助剂中的一种或几种,均达不到本发明的技术效果(提高水热稳定性,减少结焦提高使用寿命),也就是说,本发明的催化助剂之间存在特定的配合关系。

事实上,本发明曾经尝试将催化助剂中的磷酸铌NbOPO4替换为五氧化二妮Nb2O5,发现尽管助剂中也引入了Nb,但其技术效果明显低于磷酸铌NbOPO4,其不仅水热稳定性稍差,其催化剂床层结焦相对快速,从而导致催化剂孔道堵塞,催化剂床层压降上升相对较快。本发明也曾尝试引入其他磷酸盐,但这种尝试尽管引入了磷酸根离子,但同样存在水热稳定性相对稍差,其催化剂床层结焦相对快速,从而导致催化剂孔道堵塞,催化剂床层压降上升相对较快。

尽管本发明引入催化助剂有如此之多的优势,但本发明必须说明的是,引入催化助剂仅仅是优选方案之一,即使不引入该催化助剂,也不影响本发明主要发明目的的实施。不引入本发明的催化助剂特别是磷酸铌,其相较于引入催化助剂的方案,其缺陷仅仅是相对的。即该缺陷是相对于引入催化助剂之后的缺陷,其相对于本发明之外的其他现有技术,本发明所提及的所有优势或者新特性仍然存在。该催化助剂不是解决本发明主要技术问题所不可或缺的技术手段,其只是对本发明技术方案的进一步优化,解决新的技术问题。

所述催化剂的制备方法可以采取常规的浸渍法以及其他替代方法,本领域技术人员可以根据其掌握的现有技术自由选择,本发明不再赘述。

优选的,所述固定床反应器的反应条件为:反应温度为350-370℃,氢分压为13.0-15.0MPa,氢油体积比800-1000,体积空速0.4-0.6h-1

优选的,所述工艺流程包括,装置主要包括原料预分馏部分(脱水和切尾)、反应部分和分馏部分。

1、原料预分馏部分

从罐区来的原料油经原料油过滤器除去大于25μm的固体颗粒,与预分馏塔顶汽换热升温后,与预分馏塔中段回流液换热升温,然后与预分馏塔底重油换热升温,最后经预分馏塔进料加热炉加热至180℃进入原料油预分馏塔(脱水),塔顶汽经冷凝后进入预分馏塔顶回流罐并分离为汽油和含油污水,一部分汽油作塔顶回流使用,一部分汽油作加氢单元原料使用;预分馏塔(脱水)的拔头油由塔底排出,再经过换热和加热炉加热达到360℃后进入预分馏塔(切尾),预分馏塔(切尾)底重油,作为沥青出装置,而其他馏出馏分混合后作加氢单元原料使用。

2、反应部分

经过预处理后的煤焦油进入加氢原料油缓冲罐,原料油缓冲罐用燃料气气封。自原料油缓冲罐来的原料油经加氢进料泵增压后,在流量控制下与混合氢混合,经反应流出物/反应进料换热器换热后,然后经反应进料加热炉加热至反应所需温度,进入加氢改质反应器,反应器间设有注急冷氢设施。

自反应器出来的反应流出物经反应流出物/反应进料换热器、反应流出物/低分油换热器、反应流出物/反应进料换热器依次与反应进料、低分油、反应进料换热,然后经反应流出物空冷器及水冷器冷却至45℃,进入高压分离器。为了防止反应流出物中的铵盐在低温部位析出,通过注水泵将冲洗水注到反应流出物空冷器上游侧的管道中。

冷却后的反应流出物在高压分离器中进行油、气、水三相分离。高分气(循环氢)经循环氢压缩机入口分液罐分液后,进入循环氢压缩机升压,然后分两路:一路作为急冷氢进反应器;一路与来自新氢压缩机的新氢混合,混合氢与原料油混合作为反应进料。含硫、含氨污水自高压分离器底部排出至酸性水汽提装置处理。高分油相在液位控制下经减压调节阀进入低压分离器,其闪蒸气体排至工厂燃料气管网。

低分油经精制柴油/低分油换热器和反应流出物/低分油换热器分别与精制柴油、反应流出物换热后进入分馏塔。入塔温度用反应流出物/低分油换热器旁路调节控制。

新氢经新氢压缩机入口分液罐经分液后进入新氢压缩机,经两级升压后与循环氢混合。

3、分馏部分

从反应部分来的低分油经精制柴油/低分油换热器、反应流出物/低分油换热器换热至275℃左右进入分馏塔。塔底设重沸炉,塔顶油气经塔顶空冷器和水冷器冷凝冷却至40℃,进入分馏塔顶回流罐进行气、油、水三相分离。闪蒸出的气体排至燃料气管网。含硫含氨污水与高分污水一起送出装置。油相经分馏塔顶回流泵升压后一部分作为塔顶回流,一部分作为粗汽油去稳定塔。

从分馏塔顶回流罐来的粗汽油经稳定汽油(精制石脑油)/粗汽油换热后进入汽油稳定塔。稳定塔底用精制柴油作稳定重沸器热源,稳定塔塔顶油气经稳定塔顶水冷器冷凝冷却至40℃,进入稳定塔顶回流罐进行气、油、水三相分离。闪蒸出的气体排至燃料气管网。含硫含氨污水与高分污水一起送出装置。油相经稳定塔顶回流泵升压后大部分作为塔顶回流,小部分作为轻油排入不合格油中出装置。塔底稳定汽油作为石脑油去罐区。

为了抑制硫化氢对塔顶管道和冷换设备的腐蚀,在分馏塔和稳定塔塔顶管道采用注入缓蚀剂措施。缓蚀剂自缓蚀剂罐经缓蚀剂泵注入塔顶管道。

分馏塔塔底精制柴油经精制柴油泵增压后与低分油换热至100℃左右,然后进入柴油空冷器冷却至50℃后出装置作为优质燃料油去罐区。

优选的,所述固定床反应器包括1-5个催化剂床层,进一步优选2-3个催化剂床层。

本发明的加氢精制工艺通过选取特定的催化剂,所述催化剂通过选取特定比例的MSU-G、SBA-15和HMS复合物/混合物作为载体,以及选取特定比例的氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC作为活性成分,所述的催化剂还含有催化助剂,所述催化助剂为TiO2、CeO2、V2O5和NbOPO4的混合物,使得该催化剂产生协同效应,对中低温煤焦油的加氢脱硫能控制在总硫含量低于5ppm,同时对中低温煤焦油中的芳烃不会产生裂解。

具体实施方式

本发明通过下述实施例对本发明的加氢精制工艺进行说明。

实施例1

通过浸渍法制备得到催化剂,载体为MSU-G、SBA-15和HMS的混合物,混合比例是1:1.1:0.5。所述活性组分氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的总含量为载体质量的10%,其摩尔比为1:0.4:0.3:0.8。

将所述催化剂装填入固定床反应器,所述反应器的反应管由内径50mm的不锈钢制成,催化剂床层设置为3层,催化剂床层温度用UGU808型温控表测量,原材料中低温煤焦油由北京卫星制造厂制造的双柱塞微量泵连续输送,氢气由高压气瓶供给并用北京七星华创D07-11A/ZM气体质量流量计控制流速,催化剂装填量为2kg。反应后的产物经水浴室温冷却后进行气液分离。

所用原料为哈萨克斯坦中低温煤焦油,其含硫量高达2400ppm。

控制反应条件为:温度360℃,氢分压14.0MPa,氢油体积比900,体积空速0.5h-1

测试最终的产品,总硫含量降低到1ppm,芳烃损失率低于2%。

实施例2

通过浸渍法制备得到催化剂,载体为MSU-G/SBA-15复合物、MSU-G/HMS和SBA-15/HMS复合物的混合,其中MSU-G、SBA-15和HMS的比例与实施例1相同。所述活性组分氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的总含量为载体质量的10%,其摩尔比为1:0.6:0.45):1.2。

其余条件与实施例1相同。

测试最终的产品,总硫含量降低到2ppm,芳烃损失率低于2%。

对比例1

将实施例1的载体替换为MSU-G,其余条件不变。

测试最终的产品,总硫含量降低到29ppm,芳烃损失率大于5%。

对比例2

将实施例1的载体替换为SBA-15,其余条件不变。

测试最终的产品,总硫含量降低到33ppm,芳烃损失率大于5%。

对比例3

将实施例1的载体替换为HMS,其余条件不变。

测试最终的产品,总硫含量降低到27ppm,芳烃损失率大于5%。

对比例4

将实施例1中的载体替换为MSU-G/SBA-15复合物,其余条件不变。

测试最终的产品,总硫含量降低到37ppm,芳烃损失率大于5%。

对比例5

将实施例1中的载体替换为SBA-15/HMS复合物,其余条件不变。

测试最终的产品,总硫含量降低到30ppm,芳烃损失率大于5%。

对比例6

将实施例1中的载体替换为MSU-G/HMS复合物,其余条件不变。

测试最终的产品,总硫含量降低到39ppm,芳烃损失率大于5%。

实施例1与对比例1-6表明,本发明采用特定比例的MSU-G、SBA-15和HMS复合物/混合物作为载体,当替换为单一载体或两两复合载体时,均达不到本发明的技术效果,因此本发明的特定比例的MSU-G、SBA-15和HMS复合物/混合物作为载体与催化剂其他组分之间具备协同效应,所述加氢精制工艺产生了预料不到的技术效果。

对比例7

省略实施例1中的MO2N,其余条件不变。

测试最终的产品,总硫含量降低到41ppm,芳烃损失率大于5%。

对比例8

省略实施例1中的WC,其余条件不变。

测试最终的产品,总硫含量降低到32ppm,芳烃损失率大于5%。

上述实施例及对比例7-8说明,本发明的加氢精制工艺的催化剂几种活性组分之间存在特定的联系,省略或替换其中一种或几种,都不能达到本申请的特定效果,证明其产生了协同效应。

实施例3

催化剂中含有催化助剂TiO2、CeO2、V2O5和NbOPO4,其含量分别为1%、1.5%、1%和3%,其余与实施例1相同。

测试最终的产品,其使用3个月后,催化剂床层压降无任何变化,相较于同样使用时间实施例1的催化剂床层压降减少14%。

对比例9

相较于实施例3,将其中的NbOPO4省略,其余条件相同。

测试最终的产品,其使用3个月后,催化剂床层压降升高,相较于同样使用时间实施例1的催化剂床层压降只减少4.1%。

对比例10

相较于实施例3,将其中的CeO2省略,其余条件相同。

测试最终的产品,其使用3个月后,催化剂床层压降升高,相较于同样使用时间实施例1的催化剂床层压降只减少3.7%。

实施例3与对比例9-10表明,本发明的催化助剂之间存在协同关系,当省略或替换其中一个或几个组分时,都不能达到本发明加入催化助剂时的减少结焦从而阻止催化剂床层压降升高的技术效果。即,其验证了本发明的催化助剂能够提高所述催化剂的使用寿命,而其他催化助剂效果不如该特定催化助剂。

申请人声明,本发明通过上述实施例来说明本发明的工艺,但本发明并不局限于上述工艺,即不意味着本发明必须依赖上述详细催化剂才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1