一种含有纳米填料润滑脂组合物及制备方法与流程

文档序号:13326679阅读:338来源:国知局

本发明属于润滑脂技术领域,特别是一种含有纳米填料润滑脂组合物及制备方法。



背景技术:

纳米摩擦学或者称为微观摩擦学,它是在原子、分子尺度上研究摩擦界面上的行为、损伤及其对策。主要研究内容包括纳米薄膜润滑和围观摩擦机理、以及表面和界面分子工程,即通过材料表面微观改型或分子图层,或者建立有序分子膜的润滑状态,以获得优异的减摩耐磨性能。

虽然纳米摩擦学的发展仅仅几年时间,在理论和应用研究方面都取得重大进展,并已形成自身体系,这些研究成果不仅完善了补充了摩擦学理论,而且开辟了许多新的研究领域。有些研究成果还直接应用与实际,推动现代科学技术发展。例如中国科学院兰州化学物理研究院进行了油酸修饰二氧化钛纳米微粒溶液下钢摩擦磨损性能研究;张平余研究了脂肪酸及表面修饰二硫化钼纳米微粒在摩擦过程中结构变化的xps研究;乔玉林制备了表面修饰硼酸盐润滑油添加剂,并用四球试验机研究了其摩擦学性能。

目前纳米材料在润滑油领域已得到较为深入的研究,但在润滑脂领域应用却鲜见报道。一些学者对几种纳米粒子的摩擦学行为进行了报道,证明了纳米粒子具有较好的摩擦学性能。如何将先进的纳米技术与传统的润滑脂制造业有机融合充分体现其优势,已是摆在我们面前的问题。本专利旨在开拓纳米材料在润滑脂减摩抗磨方面的性能研究。

专利号为2016100039053提供了一种含纳米稀土氧化物的润滑脂,在锂基脂、钙基脂、锂钙基脂中加入纳米ceo2或纳米la2o3,具备良好的摩擦学性能和热稳定性。

专利号为2015108638617提供了一种含纳米颗粒的锂基润滑脂,在锂基脂中加入一定量的纳米sio2和纳米mos2,改进后的润滑脂抗磨性更好,承载能力更强。

专利号为2006101653091提供了一种包括式a化合物和laf3的复合纳米微粒润滑脂,改进后的润滑脂具备良好的减摩抗磨性能。

专利号为2013101865447提供了一种纳米级齿轮油润滑脂,该专利在润滑脂中加入纳米二氧化钛,使得齿轮的精度不被破坏,延长齿轮的寿命。

专利号为2006100179411提供了一种含有纳米填料的润滑脂,无机纳米粒子是纳米二氧化硅、三氧化二铝,四氧化三铁或者它们的混合物,纳米粒子用硅烷改性剂进行处理。

专利号为2013100554239提供了一种微纳米颗粒改性复合钛基润滑脂,有效降低摩擦系数、磨斑直径,润滑脂具有良好的自修复性能,可应用于各种机械装备及设备中。

专利号为2005100496597提供了一种含有纳米氧化亚铜润滑剂,该发明工艺、设备简单,成本低,制得的产物稳定性高。

专利号为2011103973907提供了一种纳米凹凸棒润滑脂的制备方法,制备的纳米凹凸棒润滑脂外观透明,具有优良的高温性能和优异的抗磨和承载能力。

专利号为2012101887329提供了一种含纳米硫化亚铁颗粒的润滑油添加剂,润滑油添加剂可用作多功能润滑油和润滑脂的添加剂,还可以用作各种车辆、船舶、石油化工、矿山的大型机械设备润滑系统地修复抗磨剂。

专利号为2014102393452提供了一种含纳米金刚石的锂基润滑脂,本发明将纳米金刚石与烃类溶剂进行混合后,粉碎和分散,即采用烃类溶剂对纳米金刚石进行表面处理,使纳米金刚石与润滑脂的其他组分混合后,分布均匀,粒度和形貌一致性,无偏析、无分层、无沉积。

专利号为2012104189297一种含碳纳米管的润滑脂,润滑脂组成由稠化剂为膨润土、基础油为精制矿物油或合成油、碳纳米管填料和极性助分散剂组成。润滑脂能明显提高润滑脂的抗磨擦性能;能提高膨润土润滑脂的高温胶体稳定性能。

专利号为201110415955x提供了一种混合纳米润滑脂添加剂,混合纳米润滑脂添加剂由如下组分组成,各组分的质量百分配比为al2o3粉末、cu粉末、al粉末。加入添加剂的润滑脂摩擦系数降低42%~79%,抗极压性能增加36.8%~47.4%

本专利是将纳米二硫化钨颗粒加入到锂基润滑脂中,纳米二硫化钨是多层富勒烯结构,能够有效降低表面摩擦,提高润滑脂承载能力,在pb、pd、磨斑直径指标上有显著提高,起到减磨抗磨作用。



技术实现要素:

本发明的目的是提供一种锂基润滑脂,降低摩擦系数,提高润滑脂承载能力,提高极压抗磨性能。

本发明的技术方案如下:

一种含有纳米填料润滑脂组合物,组分及以重量百分比含量如下:

深度精制矿物油,饱和烃含量90%-99%,硫含量为0.001%~0.01%,粘度指数大于100。

酯类油为偏苯三酸酯、季戊四醇酯和癸二酸二辛酯中的一种。

烯烃合成油,由c8、c10、c12烯烃聚合而成,100℃运动粘度为8-20mm2/s。

稠化剂是12-羟基硬脂酸锂。

抗氧剂是二异辛基二苯胺

极压抗磨剂是二硫化钨纳米颗粒,具备多层富勒烯结构,其具有低的表面能,高的化学稳定性,其化学稳定性和摩擦学性能优于普通基础油润滑剂,纳米二硫化钨相当于一个个微小的“滚珠”,这些“滚珠”在摩擦副表面平摊成一层,通过纳米粒子自身形成特殊的“分子滚珠”,提高润滑剂的抗磨性能及承载能力,降低摩擦系数;但是纳米粒子含量过高,容易造成“滚珠”重叠形成多层,从而增加了“滚珠”之间的互相摩擦,摩擦性能降低。

本发明和准备方法如下:

(a)首先向反应釜中加入深度精制矿物基础油,并加入加入稠化剂;

(b)搅拌升温到210℃-215℃后加入酯类油,控制急冷后温度在150℃-190℃,加入二异辛基二苯胺抗氧剂、二硫化钨极压抗磨剂;

(c)加入烯烃合成油降温到80℃;

(d)润滑脂经过三辊机压油,形成最终产品。

本发明的润滑脂具有如下优点:由于加入了二硫化钨纳米颗粒,润滑脂能降低摩擦系数,提高承载能力,提高极压抗磨性能。本发明兼有润滑脂配方和工艺技术,具有广阔的经济前景,可以工业化生产。可以用于具备一定极压抗磨要求的润滑工况。

具体实施方式

实施例1:

首先向反应釜中加入350g深度精制矿物油,其中矿物油饱和烃含量90%,硫含量0.01%,并投入160g12-羟基硬脂酸锂;搅拌升温到215℃,加入190g偏苯三酸酯,控制急冷后温度在150℃;加入抗氧剂二异辛基二苯胺10g,;加入极压抗磨剂二硫化钨40g;继续加入250g合成烃基础油,其中100℃粘度为8mm2/s,降温至80℃,润滑脂经过三辊机压油形成最总成品。

实施例2:

首先向反应釜中加入400g深度精制矿物油,其中矿物油饱和烃含量90%,硫含量0.01%,并投入150g12-羟基硬脂酸锂;搅拌升温到210℃,加入150g季戊四醇酯,控制急冷后温度在160℃;加入抗氧剂二异辛基二苯胺50g;加入极压抗磨剂二硫化钨10g。继续加入240g合成烃基础油,其中100℃粘度为8mm2/s,降温至80℃,润滑脂经过三辊机压油形成最总成品。

实施例3:

首先向反应釜中加入370g深度精制矿物油,其中矿物油饱和烃含量90%,硫含量0.01%,并投入150g12-羟基硬脂酸锂。搅拌升温到215℃,加入200g癸二酸二辛酯,控制急冷后温度在170℃。加入抗氧剂二异辛基二苯胺30g;加入极压抗磨剂二硫化钨50g。继续加入200g合成烃基础油,其中100℃粘度为8mm2/s,降温至80℃,润滑脂经过三辊机压油形成最总成品。

实施例4:

首先向反应釜中加入400g深度精制矿物油,其中矿物油饱和烃含量90%,硫含量0.01%,并投入90g12-羟基硬脂酸锂。搅拌升温到213℃,加入180g偏苯三酸酯类油,控制急冷后温度在180℃。加入抗氧剂二异辛基二苯胺50g;加入极压抗磨剂二硫化钨30g。继续加入250g合成烃基础油,其中100℃粘度为8mm2/s,降温至80℃,润滑脂经过三辊机压油形成最总成品。

实施例5:

首先向反应釜中加入370g深度精制矿物油,其中矿物油饱和烃含量90%,硫含量0.01%,并投入160g12-羟基硬脂酸锂。搅拌升温到215℃,加入200g季戊四醇酯,控制急冷后温度在190℃。加入抗氧剂二异辛基二苯胺30g;加入极压抗磨剂二硫化钨20g。继续加入220g合成烃基础油,其中100℃粘度为8mm2/s,降温至80℃,润滑脂经过三辊机压油形成最总成品。

实施例6:

首先向反应釜中加入390g深度精制矿物油,其中矿物油饱和烃含量90%,硫含量0.01%,并投入130g12-羟基硬脂酸锂。搅拌升温到215℃,加入180g癸二酸二辛酯,控制急冷后温度在150℃。加入抗氧剂二异辛基二苯胺20g;加入极压抗磨剂二硫化钨40g。继续加入240g合成烃基础油,其中100℃粘度为8mm2/s,降温至80℃,润滑脂经过三辊机压油形成最总成品。

实施例1-6组分含量见表1

实施例1-6性能数据见表2,其中比较例为国外品牌锂基极压抗磨润滑脂

从以上案例和市场上的同类产品对比数据可以看出:(1)本产品具有较好的极压抗磨性能,磨痕直径小于同类产品,pb值与pd值大于同类产品。

本发明提出了一种含有纳米填料润滑脂组合物及其制备方法,通过实例进行了描述,相关技术人员明显能在不脱离本发明内容、精神和范围内对本文所述的组分和方法进行改动和适当变更与组合,来实现本发明技术。特别需要指出的是,所有相似的替换和改动对本领域技术人员来说是显而易见的,他们都被市委包括本发明精神、范围和内容中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1