一种可制冷的液态燃料膨化裂变器的制作方法

文档序号:19797136发布日期:2020-01-31 14:19阅读:154来源:国知局
一种可制冷的液态燃料膨化裂变器的制作方法

本实用新型涉及液体燃料处理技术领域,更具体而言,涉及一种可制冷的液态燃料膨化裂变器。



背景技术:

面对石化能源的枯竭,人们积极地寻求化石能源的替代能源,国家政府大力推进能源多元化战略。国内外许多锅炉研究机构都将目光投向了清洁、廉价的代用燃料,如天然气、甲醇、电等。醇基燃料是最有潜力的新型替代能源,醇基燃料就是以醇类(如甲醇、乙醇、丁醇等)物质为主体配置的燃料。它是以液体或者固体形式存在的。它也是一种生物质能,和核能、太阳能、风力能、水力能一样,是各国政府目前大力推广的环保洁净能源;深受各国企业组织的青睐。这是由于甲醇分子式比煤炭、汽油、柴油的分子式单一,其燃烧排放非常清洁,没有颗粒物(pm2.5、pm10)、臭氧、二氧化硫、co、汞及其化合物,氮氧化物排放比天然气锅炉低10倍以上。甲醇燃料可以替代煤炭、柴油,可极大缓解困绕我国的大气污染。尤其是贫油、少气、多煤是我国现阶段能源结构的主要特点,因此,甲醇作为煤化工的重要衍生产品,是目前公认的极具前途的替代燃料之一。液态甲醇作为燃料燃烧能耗高,需要预热,燃烧不充分;气态甲醇作为燃料燃烧能耗相对低,燃烧更充分,有推广价值,但是易积碳;雾化甲醇积碳少,但是能耗高。



技术实现要素:

本实用新型的目的在于提供一种可制冷的液态燃料膨化裂变器,通过高速碰撞、共振箱与裂变管的共振处理液体燃料,制备稳定、能耗低、不易积碳的燃料,该过程吸热,可用于制冷气的制备,将冷气的制备用于冷风机。

为达到上述目的,本实用新型提供的技术方案为:

一种可制冷的液态燃料膨化裂变器,包括裂变管、共振箱和冷风机,所述裂变管管内设置高压喷头、入口管和出口管,所述裂变管在管体两端分别设置有第一端口和第二端口;所述第一端口固定连接有高压喷头,高压喷头包括混合腔和喷嘴,混合腔与喷嘴连通;所述喷嘴包括喷射腔和喷射孔,喷射腔为半球形,喷射腔通过喷射孔与裂变管连通;高压喷头混合腔后端连通入口管,所述入口管包括气体入口管与液体入口管;所述第二端口固定连接有出口管,出口管为t型管,横管为气体出口管,横管下方的竖管为液体出口管,气体出口管与液体出口管相连通;所述共振箱嵌套在裂变管外,所述共振箱箱体上设置有恒压阀、高压气入口和冷却管,所述共振箱箱体内充装高压空气,高压气入口用于通入高压气,所述冷却管贯穿共振箱箱体,冷却管通入常温空气,冷却管输出低温空气;所述冷风机包括中空排风盒,所述中空排风盒内设有排风道,所述中空排风盒上设有进风口和排风口,所述进风口与冷却管联通。

进一步地,所述高压喷头与第一端口密封连接;所述出口管与第二端口密封连接;所述共振箱与裂变管密封连接;冷却管在共振箱内两端外壁分别与共振箱密封连接。

进一步地,所述裂变管管体长度与直径比为40:2-40:6。

进一步地,所述出口管的液体出口管距离裂变管的距离为1-4mm。

进一步地,所述排风口处设有挡风板。

进一步地,液态燃料膨化裂变装置的气体入口管通入高压空气,液体入口管通入液态燃料;共振箱高压气入口通入高压气;调整液态燃料入口压力为0.1mpa,流速为500毫升/小时;高压空气入口压力2-6mpa,流速为4m/s-10m/s;

进一步地,液态燃料与高压空气经液态燃料膨化裂变装置中高压喷头喷射多条高速射流,高速射流直射裂变管管体内壁经反射后继续与裂变管管体内壁和与其交叉的高速射流高速碰撞,裂变管管体与其包裹在外的高压气形成共振,并将能量传送给高速射流,使得高速射流液态燃料颗粒不断变小直至其在高压气的作用下排出裂变管;液态燃料经裂变管膨化裂变后经出口管排出,在出口管中分离为气体和液体,气体可直接用作燃料。

进一步地,所述液态燃料采用甲醇。

进一步地,所述甲醇纯度大于92%。

与现有技术相比,本实用新型所具有的有益效果为:

本实用新型提供了一种可制冷的液态燃料膨化裂变器,通过高压气将液体燃料通过高速雾化流形式喷入裂变管内,在裂变管不断碰撞以及各高速雾化流的碰撞,形成气体燃料后,通过出口管输出使用;通过共振箱,实现共振箱中高压气体与裂变管中液体燃料气化对裂变管冲击的过程的共振,加强液体燃料的气化;出口管采用t型管,气体燃料流中夹带的大雾滴经重力作用落入液体出口进行回收;通过雾化吸热过程,用于冷风机冷气来源;冷风机通过调节管调节风量大小。整个系统无需外加力、外加热,即可将液体燃料制成稳定的气体燃料,该气体燃料在高压气的协助下更利于存储和运输,且提供了冷风机冷风来源。

附图说明

图1为本实用新型提供的一种可制冷的液态燃料膨化裂变器示意图;

图2为本实用新型高压喷头示意图;

图3为本实用新型排风装置的结构示意图;

图4是本实用新型排风装置的分体结构示意图;

图5是本实用新型挡风板的结构示意图。

图中,1为裂变管,2为第一端口,3为第二端口;4为高压喷头,5为入口管,501为气体入口管,502为液体入口管,6为出口管,601为气体出口管,602为液体出口管,7为混合腔,8为喷射腔,9为喷射孔,10为共振箱,11为恒压阀,12为高压气入口,13为冷却管,701为冷风机,7011为中空排风盒,7012为排风道,7013为进风口,7014为排风口,7015为挡风板。

具体实施方式

下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。

如图1-5所示,一种可制冷的液态燃料膨化裂变器,包括裂变管1、共振箱10和冷风机,所述裂变管1管内设置高压喷头4、入口管5和出口管6,所述裂变管1在管体两端分别设置有第一端口2和第二端口3;所述第一端口2固定连接有高压喷头4,高压喷头包括混合腔7和喷嘴,混合腔7与喷嘴连通;所述喷嘴包括喷射腔8和喷射孔9,喷射腔8为半球形,喷射腔8通过喷射孔9与裂变管1连通;高压喷头4混合腔7后端连通入口管5,所述入口管5包括气体入口管501与液体入口管502;所述第二端口3固定连接有出口管6,出口管6为t型管,横管为气体出口管601,横管下方的竖管为液体出口管602,气体出口管601与液体出口管602相连通;所述共振箱10嵌套在裂变管1外,所述共振箱10箱体上设置有恒压阀11和高压气入口12和冷却管13,共振箱10箱体内充装高压空气,高压气入口12用于通入高压气;所述冷却管13贯穿共振箱10箱体,冷却管13通入常温空气,冷却管13输出低温空气;所述冷风机701包括中空排风盒7011,中空排风盒7011内设有排风道7012,中空排风盒7011上设有进风口7013和排风口7014,进风口7013与冷却管10出口端联通。冷却管13输出的低温空气通过进风口7013进入中空排风盒7011内,并通过排风道分流,最终通过排风口7014排出。进一步,在排风口7014处设有挡风板7015。所述高压喷头与第一端口密封连接;所述出口管与第二端口密封连接;所述共振箱与裂变管密封连接;冷却管在共振箱内两端外壁分别与共振箱密封连接。

在本实施例中,所述裂变管管体长度与直径比为40:2-40:6。所述出口管的液体出口管距离裂变管的距离为1-4mm。

在本实施例中,液态燃料膨化裂变装置的气体入口管通入高压空气,液体入口管通入液态燃料;调整液态燃料入口压力为0.1mpa,流速为500毫升/小时、高压空气入口压力2-6mpa,流速为4m/s-10m/s通入液体燃料和气体燃料,通过高压气入口向共振箱内充入高压气,直至裂变管出口管中排出燃料气,停止向共振箱内充高压气,并设定恒压阀恒压;

在本实施例中,液态燃料与高压空气经液态燃料膨化裂变装置中高压喷头喷射多条高速射流,高速射流直射裂变管管体内壁经反射后继续与裂变管管体内壁和与其交叉的高速射流高速碰撞,裂变管管体与其包裹在外的高压气形成共振,并将能量传送给高速射流,使得高速射流液态燃料颗粒不断变小直至其在高压气的作用下排出裂变管;液态燃料经裂变管膨化裂变后经出口管排出,在出口管中分离为气体和液体,气体可直接用作燃料。

在本实施例中,所述液态燃料采用甲醇。所述甲醇纯度大于92%。

上面仅对本实用新型的较佳实施例作了详细说明,但是本实用新型并不限于上述实施例,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本实用新型宗旨的前提下作出各种变化,各种变化均应包含在本实用新型的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1