一种耐磨机油的制作方法

文档序号:21189728发布日期:2020-06-20 18:23阅读:320来源:国知局

本发明涉及一种耐磨机油,属于汽车部件技术领域。



背景技术:

机油对车辆发动机起到润滑减磨、辅助冷却降温、密封防漏、防锈防蚀、减震缓冲等作用。在发动机的活塞和汽缸之间,主轴和轴瓦之间均存在着快速的相对滑动,要防止零件过快磨损,则需要在两个滑动表面间建立油膜,有足够厚度的油膜将相对滑动的零件表面隔开,从而达到减少磨损的目的。同时机油还具有辅助冷却降温的作用,由于机油的比热值较低,而且处于发动机内部,虽然机油本身并不具有冷却作用,但发动机内由于燃料燃烧产生热能,在发动机工作时,机油能够将热量带回机油箱再散发至空气中,帮助水箱冷却发动机。

目前车辆一般行驶五千公里更换机油,最长一般行驶一万五千公里更换机油。换油的原因是发动机油在高温高速和低温低速反复交叉行驶情况下,容易在发动机缸体内产生黑色油泥问题,而聚集的黑色油泥在缸内极易结块,成为损害气缸面及活塞环的硬质结点,如果不及时清除,将降低发动机有效功率、增加尾气颗粒物的排放。近年来关于纳米金属自修复粒子、石墨烯、纳米陶瓷等的发展为发动机运行过程中的有效维护和保养提供了一种有效的方法。

目前,纳米金属自修复粒子、石墨烯、纳米陶瓷和金属有机抗磨剂等是常用的增加机油抗磨性、提高机油抗老化性能的手段,但是都不同程度地存在着性能不稳定、容易团聚、成本高、机油使用寿命不长等问题。

另外,常规的机油通常使用矿物油或聚α烯烃作为基础油,存在着抗磨性差、容易老化、高低温稳定性差等缺点,不能满足车辆、尤其是专业赛车、特种车辆运行过程中的有效维护和保养需要。

因此,开发一种性能稳定、不易团聚、抗磨性能好、换油周期长的机油,是本领域技术人员亟待解决的技术问题之一。



技术实现要素:

本发明的目的是提供一种使用寿命长的耐磨机油,具有优异的抗磨性、抗老化性和高低温稳定性好等特点,大幅提高了车辆更换机油的行驶里程数,至少部分解决了上述技术问题。

本发明提供了一种耐磨机油,其主要活性组分及其质量份数为:

根据本发明的一个具体但非限制性的实施方案,其中,所述季戊四醇酯选自季戊四醇异辛酸酯、季戊四醇异癸酸酯、季戊四醇异壬酸酯、季戊四醇异辛酸癸酸酯和季戊四醇辛酸癸酸酯中的至少一种。

根据本发明的一个具体但非限制性的实施方案,其中,所述季戊四醇酯的质量占配方总质量的60-82%。

根据本发明的一个具体但非限制性的实施方案,其中,所述纳米生物骨炭粉选自纳米牛骨炭粉、纳米猪骨炭粉、纳米马骨炭粉、纳米鱼骨炭粉和纳米羊骨炭粉中的至少一种。

根据本发明的一个具体但非限制性的实施方案,其中,所述纳米生物骨炭粉的质量占配方总质量的0.05%-1.05%。

根据本发明的一个具体但非限制性的实施方案,其中,所述纳米硼抗磨剂为100-500nm。

根据本发明的一个具体但非限制性的实施方案,其中,所述纳米生物骨炭粉为10-200nm。

根据本发明的一个具体但非限制性的实施方案,其中,所述纳米生物骨炭粉为50nm。

根据本发明的一个具体但非限制性的实施方案,其中,所述纳米生物骨炭粉是由脱脂骨头在隔绝空气的条件下经粉碎、干燥、炭化、浸渍、超声粉碎、活化、酸洗、ph值调节、干燥、球磨制得。

根据本发明的一个具体但非限制性的实施方案,所述纳米生物骨炭粉通过如下方法制备:

粉碎,将原料粉碎至粒度小于1.0mm;

干燥,原料在100-150℃下真空干燥8-15小时;

炭化,取干燥后的原料,在n2载气的高温热解炉里热解;

浸渍,取出炭化料用聚乙烯吡咯烷酮溶液浸渍2-4小时;

超声粉碎,用超声波细胞破碎仪将聚乙烯吡咯烷酮骨炭粉浸渍液超声均质2-5小时;

活化,过滤浸渍液,在100-150℃下干燥之后,放入高温热解炉在氮气保护下活化,经过冷却、排除气体后得到活化物;

酸洗,取出热解恒温后的产品,用酸洗涤。

ph值调节,酸洗后用热水多次洗涤至洗涤液的ph值为6-7为止;

干燥,将洗涤好的试样先过滤后放入干燥箱中在100-150℃下干燥1-3小时,取出样品冷却至室温,粉碎过筛就得到骨炭;

球磨,用球磨机球磨后密封包装。

本发明的有益效果主要体现在:

1.本发明用季戊四醇酯的合成酯基础油代替常规的矿物油或聚α烯烃的基础油,季戊四醇酯基础油具有优异的抗磨性、抗老化性和高低温稳定性等特点,提高了机油的抗磨性和使用寿命,延长了换油周期。

2.本发明的机油还特别添加了纳米生物骨炭粉,其具有良好的滚动润滑效果,具有很好的抗磨性和适应性,在机油中起到良好的抗磨效果,解决了机油容易团聚的问题,进一步提高了机油的抗磨性和使用寿命,提高了车辆更换机油的行驶里程数。

3.季戊四醇酯与纳米生物骨炭粉具有良好的协同效果,季戊四醇酯为星型结构包覆在纳米骨炭粉表面,形成核壳结构,同时发挥润滑和极压效果,使机油的最大无卡咬负荷和烧结负荷显著提升,大幅提升机油的抗磨性和使用寿命。

4.本发明的机油具有优异的抗磨性和超长的使用寿命,尤其适用于专业赛车和特种车辆。经实验测试,普通机油一般行驶5000公里换油,而本发明的机油可行驶里程20000公里以上,换油周期是普通机油的四倍。

具体实施方式

下文提供了具体的实施方式进一步说明本发明,但本发明不仅仅限于以下的实施方式。

本发明提供了一种耐磨机油,其主要活性组分及其质量份数为:

上述配方中,季戊四醇酯为润滑剂,是基础油。季戊四醇酯可选自季戊四醇异辛酸酯、季戊四醇异癸酸酯、季戊四醇异壬酸酯、季戊四醇异辛酸癸酸酯和季戊四醇辛酸癸酸酯中的至少一种。季戊四醇酯的质量优选占配方总质量的60-82%。

季戊四醇酯具有优异的抗磨性,可以在活塞和汽缸之间、主轴和轴瓦之间的快速相对滑动表面间建立足够厚度的油膜将相对滑动的零件表面隔开,防止零件过快的磨损,以达到减少磨损的目的。由于季戊四醇酯是全合成油,不含不饱和键,不容易被氧化,而且季戊四醇酯极易耐高温,抗老化性能优越。通过氧化安定性测试后发现,将基础油由常规的矿物油或聚α烯烃换成季戊四醇酯后,机油的抗老化性能显著提升,抗老化时间为普通机油的4倍以上。而将季戊四醇酯作为基础油用于机油配方,目前未见报道。

己二酸异辛酯也是润滑剂,起辅助润滑作用。季戊四醇酯与己二酸异辛酯复配成新的合成油体系,具有优异的抗磨性、抗老化和高低温稳定性好等特点,大幅提升了机油的抗磨性和换油周期。

聚异丁烯丁二酰亚胺为分散剂。聚异丁烯丁二酰亚胺是以高活性聚异丁烯为原料、采用热加合工艺制备的无灰分散剂,具有良好的清净分散性,可抑制发动机活塞上积炭和漆膜的生成。

二烷基二硫代磷酸锌为抗磨剂,用于润滑油中,可起到良好的抗磨性能,减少发动机磨损。

石油磺酸钙为清净剂,具有中和作用、增溶作用、分散作用及洗涤作用,主要满足高温、高负荷内燃机油的需要,清理积碳,延长发动机寿命,同时具有一定的防锈作用。

聚甲基丙烯酸酯为降凝剂,降低冷滤点、凝点、粘度,改善低温流动性;适用于所有炼油工艺和油品。

烷基二苯胺和2,6-二叔丁基对甲酚为抗氧剂。通常酚型抗氧剂的使用温度范围相对较低,多用于内燃机油、液压油和变压器油中;而胺型抗氧剂的使用温度比酚型高,特别是烷基化二苯胺型抗氧剂的高温抗氧化性能好,可用于合成酯类油中,作为喷气涡轮发动机润滑油的主要抗氧化组分。氧化试验结果表明它们可以减小油品粘度的增加,降低轴承失重。用于多元醇酯中,抗氧效果显著,金属腐蚀小,粘度增加很小,形成油泥很少。

胺与环氧化合物缩合物为破乳剂,破乳剂可在机油存在微量水的前提下,将油水快速分离,防止油品出现乳化的现象。

二甲基硅油为消泡剂,可快速消泡,减少油品运行过程中因产生泡沫而造成降温、抗磨效果下降。

有机钼、纳米硼抗磨剂和纳米生物骨炭粉为抗磨剂,起润滑作用,减少摩擦阻力,降低磨损。其中,纳米硼抗磨剂通常为100-500nm。纳米生物骨炭粉通常为10-200nm,优选50nm。纳米生物骨炭粉选自纳米牛骨炭粉、纳米猪骨炭粉、纳米马骨炭粉、纳米鱼骨炭粉、纳米羊骨炭粉中的至少一种。纳米生物骨炭粉的质量优选占配方总质量的0.05%-1.05%。

纳米生物骨炭是一种无定形碳,由脱脂骨头在隔绝空气的条件下经脱脂、脱胶、高温灼烧、分拣等多道工序碳化制得。把兽骨密闭,加热、脱脂所得的活性炭,髓吸收溶液中的杂质。纳米生物骨炭为难溶于水的白色块状,粒度较小。本发明所用纳米生物骨炭的制备工艺如下:

(1)粉碎:将原料用粉碎机粉碎至粒度小于1.0mm;

(2)干燥:原料在100-150℃下真空干燥8-15小时,使原料中水分降低至10%以下;

(3)炭化:取干燥后的原料,在n2载气的高温热解炉里热解;升温速率为5-15℃1m1n;

(4)浸渍:取出炭化料用一定浓度的聚乙烯吡咯烷酮溶液浸渍2-4小时;

(5)超声粉碎:用超声波细胞破碎仪将聚乙烯吡咯烷酮骨炭粉浸渍液超声均质2-5小时;

(6)活化:过滤浸渍液,在100-150℃下干燥之后再将样品放入高温热解炉在氮气保护下活化,经过冷却、排除气体后得到活化物;

(7)酸洗:取出热解恒温后的产品,用盐酸(通常为1:9)洗涤。

(8)ph值调节:酸洗后用热水多次洗涤至洗涤液的ph值为6-7为止。

(9)干燥:将洗涤好的试样先过滤后放入干燥箱中在100-150℃下干燥1-3小时,取出样品冷却至室温,称重,粉碎过150目筛就得到骨炭。

(10)球磨:用球磨机球磨后密封包装。

本发明首次将纳米生物骨炭粉添加到机油配方里,具有滚动润滑的效果,具有较好的抗磨性和适应性,起到良好的抗磨效果,解决了机油团聚和换油周期短的问题。由于纳米生物骨炭粉为无定型炭,成分主要为炭、磷酸钙,而炭和磷酸钙都是性能优良的抗磨剂,纳米级的生物骨炭粉分散在机油中,不仅起到非常好的滚动润滑效果,还能减震缓冲。当发动机气缸口压力急剧上升,突然加剧活塞、活塞屑、连杆和曲轴轴承上的负荷,这个负荷经过轴承的传递润滑,使承受的冲击负荷起到缓冲的作用。磨擦面加入纳米生物骨炭粉,能使摩擦系数降低,从而减少了摩擦阻力,节约能源消耗,减少磨损,因为它在磨擦面间可以减少磨粒磨损、表面疲劳、粘着磨损等所造成的摩损。

经过进一步研究发现,季戊四醇酯基础油与纳米生物骨炭粉同时添加,两者具有明显的协同效果,能显著提升机油的最大无卡咬负荷和烧结负荷,并延长抗老化时间。原因可能是季戊四醇酯为星型酯类结构,可以在金属表面形成一层致密的润滑油膜;而纳米骨炭粉则在摩擦副之间形成滚动的“钢珠”结构,减少摩擦,提高润滑效果,减少磨损;两者同时加入时,季戊四醇酯为星型结构包覆在纳米骨炭粉表面,形成核壳结构,同时发挥润滑和极压效果,从而产生明显的协同增效作用,大幅提升机油的抗磨性和换油周期。经实验测试,普通机油一般5000公里换油,而本发明的机油可行驶里程20000公里以上,行驶里程数是普通机油的四倍。

本发明的机油按照上述配方用本领域常规方法制备即可。本发明的机油具有优异的抗磨性和超长的换油周期,适合各种车辆使用,尤其适用于专业赛车、特种车辆等。

下面结合具体实施例对本发明作进一步阐述,但本发明并不限于以下实施例。

上文及下述实施例中所使用的实验方法如无特殊说明,均为常规方法。

上文及下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。

实施例1

一种耐磨机油,其组分及其质量份数为:

实施例2

一种耐磨机油,其组分及其质量份数为:

实施例3

一种耐磨机油,其组分及其质量份数为:

实施例4

一种耐磨机油,其组分及其质量份数为:

实施例5

一种耐磨机油,其组分及其质量份数为:

实施例6

一种耐磨机油,其组分及其质量份数为:

实施例7

抗磨性能实验

按照nb1sh1t0189-2017润滑油抗磨损性能的测定(四球法),对实施例1-6机油的抗磨性进行检测,检测数据如表1所示:

表1

以上三项数据代表机油的抗磨性,数值越大表示抗磨性能越好。从表1中可以看到,实施例1-6的机油抗磨性能良好。

经大量实验后发现,季戊四醇酯添加量在配方总质量的60-82%时,抗磨效果更好;纳米生物骨炭粉添加量在配方总质量的0.05%时,抗磨性已有显著的提升,随着纳米生物骨炭粉添加量的增加,抗磨性效果也越好,但增加幅度不大,因此结合其他性能,纳米生物骨炭粉的优选添加量为配方总质量的0.05%-1.05%。

实施例8

抗磨性能和抗老化性能对比实验

以实施例2的配方为基础,分别单独添加季戊四醇酯和纳米生物骨炭粉,制备如下两个对比例:

对比例1:

一种耐磨机油,其组分及其质量份数为:

对比例2:

一种耐磨机油,其组分及其质量份数为:

按照nb1sh1t0189-2017润滑油抗磨损性能的测定(四球法)和氧化安定性检测(旋转氧弹法,150℃)方法,分别对一款普通机油、对比例1(仅添加纳米骨炭粉)、对比例2(仅添加季戊四醇酯)和实施例2的机油分别进行抗磨性检测和抗老化性能检测,数据对比见表2。

其中,普通机油为壳牌(红色),主要成分:加氢基础油、乙丙共聚物、聚异丁烯双丁二酰亚胺、石油磺酸钙、二烷基二硫代磷酸锌、2,6-二叔丁基对甲酚、硅油等。

表2

通过表2前三项的抗磨损性能测试和第四项抗老化性能测试可以看出,实施例2同时添加季戊四醇酯和纳米生物骨炭粉与单独添加其中一种的对比例1和2相比,实施例2机油的最大无卡咬负荷和烧结负荷均有非常显著地提升,抗老化时间也明显延长,说明季戊四醇酯和纳米生物骨炭粉具有明显的协同效果,显著增强了抗磨性能和抗老化性能。

实施例2与普通机油相比,无论是最大无卡咬负荷、烧结负荷所表示的抗磨性测试还是氧化安定性检测的抗老化时间,实施例2明显更高,说明本发明的机油比普通机油性能有大幅提升。

以上仅是本发明的具体应用范例,对本发明的保护范围不构成任何限制。凡采用等同变换或者等效替换而形成的技术方案,均落在本发明权利保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1