本发明涉及表面工程金属催化等技术领域,尤其涉及一种实现碳薄膜超低摩擦的摩擦催化设计方法。
背景技术:
随着机械系统的高精密化、高集成化及高可靠性发展,机械系统运动部件的表界面效应越来越突出,对摩擦磨损的要求也越来越苛刻。同时据可靠数据摩擦造成全世界1/3的一次性能源消耗,60%的零部件损坏是由磨损引起的。由两者导致的直接经济损失占全国gdp的5%~7%左右。按照5%计算,2019年我国仅因摩擦、磨损导致的损失就高达4.95万亿元。因此进一步减小摩擦、降低磨损、延长运动部件的工作寿命成为润滑技术的核心问题之一。
固体超滑是指在没有液体润滑剂的状态下,通过固体润滑或者自润滑技术,使相互接触的摩擦副之间具有10-3量级及以下的摩擦系数。超滑的实现是保证真空环境下运动部件可靠运行的关键技术,为摩擦磨损问题的解决带来了根本途径,开发具有超低摩擦磨损的体系和建立超滑体系具有极大的经济价值和社会效益。二维层状材料(单层石墨烯、二硫化钼及六方氮化硼)因层间弱的范德华作用及良好的摩擦学性能,是良好的固体润滑材料,在电化学、机械、航天航空等领域有着广泛的应用前景,但是存在易氧化、磨损寿命短等缺点。
在性能各异的减摩抗磨材料中,类金刚石碳薄膜(dlc)由于高硬度、优良的耐磨性能、化学惰性以及生物相容性而受到关注,其表面及边缘悬键被钝化后形成惰性界面,在真空或者惰性环境中,摩擦系数可达10-3量级,磨损率低至10-9mm-3n-1m-1,是目前所观察到可以应用到实际工况下摩擦系数最低的固体润滑材料。不足之处在于,只有当类金刚石薄膜中sp2和sp3键比例、活性σ键以及h含量等满足一定条件时,才能展现出超滑性能,而且类金刚石碳薄膜的摩擦学性能受到诸多条件(对偶材料、环境气氛及摩擦过程等)制约。
以往解决类金刚石薄膜摩擦失效问题的方法主要集中在其它元素的掺杂(n、p、s)以及微纳结构(类石墨、类富勒烯、碳洋葱)的引入,但是均不能满足对润滑具有极高需求的机械零部件服役要求。如含氢类富勒烯碳薄膜只在大气环境下可取得优异的摩擦性能(μ~0.008),而真空中摩擦系数较高。
技术实现要素:
本发明所要解决的技术问题是提供一种简单可行、成本低廉的实现碳薄膜超低摩擦的摩擦催化设计方法。
为解决上述问题,本发明所述的一种实现碳薄膜超低摩擦的摩擦催化设计方法,其特征在于:首先将金属纳米颗粒加入到无水乙醇中,超声分散30min得到浓度为0.025~2.5g/l的金属纳米颗粒溶液;然后将所述金属纳米颗粒溶液按8~14滴/2.5cm2旋涂在氢含量8~20at.%、表面粗糙度≤5nm的碳基薄膜表面,所述无水乙醇经真空挥发后,即得均匀分布的金属纳米颗粒涂层;最后,采用机械摩擦搅拌,促使碳基薄膜磨屑和金属纳米颗粒混合,即得内嵌金属纳米颗粒外裹石墨烯的类滚珠颗粒涂层。
所述金属纳米颗粒是指cu、ni、co、fe中的一种或者两种的合金颗粒,其粒径50~200nm。
所述碳基薄膜是指类富勒烯碳基薄膜、类石墨碳基薄膜、无定形碳基薄膜中的一种。
本发明与现有技术相比具有以下优点:
1、本发明将活性金属纳米颗粒添加到碳基薄膜表面,利用摩擦过程自升温及滑动剪切作用,诱导碳薄膜产生各种活性碳原子、碳链以及含氢基团(c2h3,c3h3,c3h5,c4h7,oh等),通过活性金属粒子对碳吸附、钝化以及相变作用,实现碳薄膜无定形碳结构向石墨烯的有序化转变,形成内嵌金属纳米颗粒外部石墨烯包裹的新型类滚珠减摩产物,从而实现摩擦接触面积显著降低及碳薄膜超低摩擦。
2、本发明以金属纳米颗粒为催化剂引入到碳基薄膜摩擦界面,通过摩擦催化协同作用改进单一摩擦过程存在的摩擦系数高、环境敏感性等问题。
3、本发明简单可行、成本低廉,具有工程应用价值。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1为本发明添加不同纳米颗粒的拉曼图谱。其中:(a)cu纳米颗粒;(b)ni纳米颗粒;(c)无纳米颗粒。
图2为石墨烯包裹cu纳米颗粒结构随时间变化的形成过程。其中:(a)100转;(b)500转;(c)2000转。
图3为本发明cu纳米颗粒添加前后摩擦系数变化。
具体实施方式
实施例1一种实现碳薄膜超低摩擦的摩擦催化设计方法:首先将0.125g50nmcu纳米颗粒分散在1l无水乙醇中,超声分散30min得到cu纳米颗粒溶液;然后用1ml滴管将不同浓度的cu纳米颗粒溶液按8滴/2.5cm2旋涂在氢含量20at.%、表面粗糙度≤5nm的无定形碳基薄膜表面,经真空挥发无水乙醇后,即得均匀分布的金属纳米颗粒涂层。
将所得金属纳米颗粒涂层与氧化铝对偶球组成摩擦配伍对,下模块固定,上模块旋转,在umt于真空下进行摩擦实验。
cu金属纳米颗粒涂层与对偶球组成摩擦配伍对,通过对磨屑的tem及raman分析,发现相较于无纳米颗粒添加过程,cu纳米颗粒存在的情况下,无定形碳基薄膜raman图谱上出现明显的d峰(1360cm-1)和2d峰(2700cm-1)(图1),为石墨烯的特征峰。如图2(a-c)所示,tem表征发现随着滑动圈数的增加,由于摩擦过程的自升温及滑动剪切作用,实现了纳米颗粒周围碳薄膜无定形结构向石墨烯结构的有序化转变,形成内嵌金属纳米颗粒外部石墨烯包裹的类滚珠减摩产物,摩擦系数降低到0.008(参见图3)。
实施例2一种实现碳薄膜超低摩擦的摩擦催化设计方法:首先将0.25g100nmni纳米颗粒分散在1l无水乙醇中,超声分散30min得到ni纳米颗粒溶液;然后用1ml滴管将不同浓度的ni纳米颗粒溶液按10滴/2.5cm2旋涂在氢含量15at.%、表面粗糙度≤5nm的类富勒烯碳基薄膜表面,经真空挥发无水乙醇后,即得均匀分布的金属纳米颗粒涂层。
将所得的金属纳米颗粒涂层与氧化铝对偶球组成摩擦配伍对,下模块固定,上模块旋转,在umt于n2氛围下进行摩擦实验。
类富勒烯碳基薄膜的raman图谱上出现明显的d峰(1360cm-1)和2d峰(2800cm-1)(图1),为石墨烯的特征峰;ni纳米颗粒同样可以诱导碳薄膜的有序化,促使薄膜结构向石墨烯结构的有序化转变,形成了外层包裹石墨烯的金属纳米颗粒,该类滚珠结构起到轴承作用,从而利于摩擦系数的降低。其摩擦系数低至0.007。
实施例3一种实现碳薄膜超低摩擦的摩擦催化设计方法:首先将0.025g200nmco纳米颗粒分散在1l无水乙醇中,超声分散30min得到co纳米颗粒溶液;然后用1ml滴管将不同浓度的ni纳米颗粒溶液按12滴/2.5cm2旋涂在氢含量10at.%、表面粗糙度≤5nm的类石墨碳基薄膜表面,经真空挥发无水乙醇后,即得均匀分布的金属纳米颗粒涂层。
将所得的金属纳米颗粒涂层与碳化硅组成摩擦配伍对,下模块固定,上模块旋转,在40%大气湿度条件下,于csm上进行往复摩擦实验。
同样可以观察到薄膜结构向石墨烯的有序转变,形成内嵌纳米颗粒外部石墨烯包裹的类滚珠,摩擦系数是0.01。
实施例4一种实现碳薄膜超低摩擦的摩擦催化设计方法:首先将2.5g100nmcu/ni合金(cu:ni=1:1)纳米颗粒分散在1l无水乙醇中,超声分散30min得到金属纳米颗粒溶液;然后用1ml滴管将不同浓度的ni纳米颗粒溶液按14滴/2.5cm2旋涂在氢含量8at.%、表面粗糙度≤5nm的无定形碳基薄膜表面,经真空挥发无水乙醇后,即得均匀分布的金属纳米颗粒涂层。
将所得的金属纳米颗粒涂层与氮化硅对偶球组成摩擦配伍对,下模块固定,上模块旋转,在20%大气湿度条件下,于umt上进行旋转摩擦实验。
cu/ni合金的存在可以诱导碳薄膜的有序化,促使无定形碳结构向石墨烯结构的有序化转变,形成外层包裹石墨烯的金属纳米颗粒,该类滚珠结构起到轴承作用,有利于摩擦系数的降低。其摩擦系数为0.009。
上述实施例1~4中的摩擦磨损实验机采用点-面接触的形式,上模块旋转,下模块固定,摩擦运动方式包括往复摩擦、旋转摩擦。
对偶球包括但不限于氧化铝、碳化硅等陶瓷球和轴承钢、不锈钢球等。
摩擦过程的环境氛围包括但不限于湿度氛围、惰性气体氛围、真空环境等。