经成形复合层叠置件和用于使复合层叠置件成形的方法与流程

文档序号:16525179发布日期:2019-01-05 10:17阅读:150来源:国知局
经成形复合层叠置件和用于使复合层叠置件成形的方法与流程

本发明大体上涉及复合部件。更具体地说,本发明涉及复合材料层叠置件和用于使复合材料层叠置件成形的方法。



背景技术:

较普遍地,例如陶瓷基质复合(cmc)材料和聚合物基质复合(pmc)材料等非传统高温复合材料正在例如燃气涡轮发动机等应用中使用。由此类材料构造的部件与例如金属部件等典型部件相比具有较高温度能力,这可以允许改进的部件性能和/或增大发动机温度。复合部件还可提供其它优点,例如改进的强度重量比。

通常,复合部件至少部分由多个复合材料层形成。复合层可从还可包括例如溶剂和结合剂等其它组分的复合基质带或片材切割,且接着堆叠以形成复合层叠置件。典型地,堆叠的层具有不规则的抛光边缘,且层可随着加工堆叠的层而相对于彼此移动以形成复合部件。不规则抛光边缘以及层之间的相对运动可能在复合层子组件的组件中留下空隙,所述组件例如复合层叠置件、复合层、复合层封装等的组件。此类空隙可能需要填充物材料和/或额外致密化材料来减小或排除所述空隙,这可能增加复合部件的制造复杂性、时间和/或成本。此外,此类空隙可能降低复合部件的完整性,这可能减小零件良率和增加零件废品率,以及减少在翼上的时间和计划外的维修请求。

由此,改进的复合部件和用于形成复合部件的方法将是有用的。具体而言,产生复合层和/或复合层子组件之间具有较少空隙或无空隙的复合层组件的用于形成复合部件的方法将是有益的。作为一实施例,用于对复合层叠置件进行生坯机械加工以使叠置件的一个或多个表面或边缘成形以实现与邻近复合层子组件的较好配合的方法将是有利的。



技术实现要素:

本发明的各方面和优势将部分地在以下描述中阐述,或可从所述描述显而易见,或可通过本发明的实践而得知。

在本发明的一个示例性实施例中,提供一种用于形成复合部件的方法。所述方法包括:叠置多个复合层以形成复合层叠置件;部分加工所述复合层叠置件以形成生坯状态叠置件;对生坯状态叠置件进行机械加工;组装所述生坯状态叠置件与一个或多个子组件;以及加工生坯状态叠置件和所述一个或多个子组件以形成复合部件。

在本发明的另一示例性实施例中,提供一种用于形成复合部件的方法。所述方法包括:叠置多个复合层以形成叠层封装;部分加工叠层封装以形成生坯状态叠层封装;对生坯状态叠层封装进行机械加工以沿着生坯状态叠层封装限定经机械加工表面;组装生坯状态叠层封装与腔预成型件;以及加工生坯状态叠层封装和腔预成型件以形成复合部件。在此示例性实施例中,复合部件为涡轮喷嘴翼型件。

在本发明的另一示例性实施例中,提供一种用于形成复合部件的方法。所述方法包括:叠置多个复合层以形成复合层叠置件;压实所述复合层叠置件以形成生坯状态叠置件;对生坯状态叠置件进行机械加工;组装所述生坯状态叠置件与一个或多个子组件;以及加工生坯状态叠置件和所述一个或多个子组件以形成复合部件。

技术方案1.一种用于形成复合部件的方法,包括:叠置多个复合层以形成复合层叠置件;部分加工所述复合层叠置件以形成生坯状态叠置件;对所述生坯状态叠置件进行机械加工;组装所述生坯状态叠置件与一个或多个子组件;以及加工所述生坯状态叠置件和所述一个或多个子组件以形成所述复合部件。

技术方案2.根据技术方案1所述的方法,所述部分加工所述复合层叠置件包括压实所述复合层叠置件。

技术方案3.根据技术方案1所述的方法,所述加工所述生坯状态叠置件和所述一个或多个子组件包括:对所述生坯状态叠置件和所述一个或多个子组件进行高压处理以形成经高压处理的坯体;焙烧所述经高压处理的坯体以形成经焙烧坯体;以及致密化所述经焙烧坯体以形成所述复合部件。

技术方案4.根据技术方案1所述的方法,所述对所述生坯状态叠置件进行机械加工沿着所述生坯状态叠置件限定经机械加工表面。

技术方案5.根据技术方案4所述的方法,所述组装所述生坯状态叠置件与一个或多个子组件包括抵靠着子组件的经机械加工表面的至少一部分定位所述生坯状态叠置件的所述经机械加工表面的至少一部分。

技术方案6.根据技术方案4所述的方法,所述组装所述生坯状态叠置件与一个或多个子组件包括抵靠着子组件的未经机械加工表面的至少一部分定位所述生坯状态叠置件的所述经机械加工表面的至少一部分。

技术方案7.根据技术方案1所述的方法,所述子组件包括多个湿润复合层。

技术方案8.根据技术方案1所述的方法,所述子组件包括具有经机械加工表面的生坯状态叠置件。

技术方案9.根据技术方案1所述的方法,所述子组件包括多个压实的复合层。

技术方案10.根据技术方案1所述的方法,所述生坯状态叠置件经机械加工以移除所述叠置件内的至少一个叠层的一部分。

技术方案11.根据技术方案10所述的方法,所述经移除部分沿着所述生坯状态叠置件的边缘。

技术方案12.根据技术方案10所述的方法,所述经移除部分从所述生坯状态叠置件的边缘偏移。

技术方案13.根据技术方案1所述的方法,形成所述复合层叠置件的所述多个复合层被加大尺寸以提供用于将所述生坯状态叠置件机械加工到预定尺寸的机械坯料。

技术方案14.根据技术方案1所述的方法,所述复合部件是燃气涡轮发动机部件。

技术方案15.根据技术方案1所述的方法,所述复合层由陶瓷基质复合材料形成。

技术方案16.一种用于形成复合部件的方法,包括:叠置多个复合层以形成叠层封装;部分加工所述叠层封装以形成生坯状态叠层封装;对所述生坯状态叠层封装进行机械加工以沿着所述生坯状态叠层封装限定经机械加工表面;组装所述生坯状态叠层封装与腔预成型件;以及加工所述生坯状态叠层封装和腔预成型件以形成所述复合部件,其中所述复合部件是涡轮喷嘴翼型件。

技术方案17.根据技术方案16所述的方法,所述经机械加工表面抵靠着所述腔预成型件的后边缘定位。

技术方案18.根据技术方案16所述的方法,进一步包括:组装多个复合缠绕叠层与所述生坯状态叠层封装和所述腔预成型件,其中组装所述复合缠绕叠层包括将所述多个复合缠绕叠层缠绕在所述生坯状态叠层封装和所述腔预成型件周围。

技术方案19.根据技术方案16所述的方法,部分加工所述复合层叠置件包括压实所述复合层叠置件。

技术方案20.一种用于形成复合部件的方法,包括:叠置多个复合层以形成复合层叠置件;压实所述复合层叠置件以形成生坯状态叠置件;对所述生坯状态叠置件进行机械加工;组装所述生坯状态叠置件与一个或多个子组件;以及加工所述生坯状态叠置件和所述一个或多个子组件以形成所述复合部件。

参考以下描述和所附权利要求书,本发明的这些和其它特征、方面及优点将变得更好理解。并入于本说明书中且构成本说明书的一部分的附图说明本发明的实施例,且连同所述描述一起用于解释本发明的原理。

附图说明

本说明书中针对所属领域的一般技术人员来阐述本发明的完整和启发性公开内容,包括其最佳模式,本说明书参考了附图,其中:

图1提供根据本发明的各种实施例的示例性燃气涡轮发动机的横截面示意图。

图2提供根据本发明示例性实施例的复合层叠置件的横截面视图。

图3提供根据本发明示例性实施例已经部分处理以形成生坯状态叠置件且已在其生坯状态中机械加工的图2的复合层叠置件的横截面视图。

图4提供根据本发明的示例性实施例抵靠着另一子组件定位的经生坯机械加工的复合层子组件的一部分的横截面视图。

图5提供根据本发明的示例性实施例的经组装以限定复合涡轮喷嘴翼型的多个复合子组件的横截面视图。

图6a提供根据本发明的示例性实施例的复合层叠置件的横截面视图。

图6b示出将通过对图6a的复合层叠置件进行生坯机械加工而限定的预成型件的概览图。

图6c提供已经部分处理以形成生坯状态叠置件且已在其生坯状态中机械加工以限定图6b中所示的概览的图6a的复合层叠置件的横截面视图。

图6d提供根据本发明的示例性实施例的经组装以限定复合涡轮喷嘴翼型后边缘部分的多个复合子组件的横截面视图。

具体实施方式

现将详细参考本发明的当前实施例,其中的一个或多个实施例示于附图中。详细描述中使用数字和字母标示来指代图中的特征。图中和描述中使用相同或类似的标记来指代本发明的相同或类似零件。如本说明书所用,术语“第一”、“第二”和“第三”可互换使用以区分开一个部件与另一部件,而并非意图表示个别部件的位置或重要性。术语“上游”和“下游”是指相对于流体路径中的流体流动的相对方向。举例来说,“上游”是指流体流出的方向,而“下游”是指流体流向的方向。

现参看图式,其中相同的标记贯穿各图指示相同的元件,图1是根据本发明的示例性实施例的燃气涡轮发动机的示意性横截面图。更确切地说,对于图1的实施例,燃气涡轮发动机为高旁路涡扇喷气发动机10,其在本说明书中被称为“涡扇发动机10”。如图1所示,涡扇发动机10限定轴向方向a(平行于出于参考目的而提供的纵向中心线12延伸)和径向方向r。一般来说,涡扇10包括风扇区段14和安置在风扇区段14下游的核心涡轮发动机16。

所示出的示例性核心涡轮发动机16通常包括限定环形入口20的大体上管状外壳体18。外壳体18以串联流关系包覆:压缩机区段,其包括增压器或低压(lp)压缩机22和高压(hp)压缩机24;燃烧区段26;涡轮机区段,其包括高压(hp)涡轮机28和低压(lp)涡轮机30;以及喷气排气喷嘴区段32。高压(hp)轴或转轴34将hp涡轮机28传动地连接到hp压缩机24。低压(lp)轴或转轴36将lp涡轮机30传动地连接到lp压缩机22。

对于所示出的实施例,风扇区段14包括风扇38,风扇38具有以间隔开的方式连接到盘42的多个风扇叶片40。如所示出的,风扇叶片40从盘42大体沿着径向方向r朝外延伸。风扇叶片40和盘42可通过lp轴36围绕纵向轴线12一起旋转。在一些实施例中,可包括具有多个齿轮的动力齿轮箱,以用于将lp轴36的旋转速度逐步降低到更高效的旋转风扇速度。

仍参看图1的示例性实施例,盘42由可旋转的前舱体48覆盖,前舱体48具有空气动力学轮廓以促进气流穿过所述多个风扇叶片40。另外,示例性风扇区段14包括环形风扇壳体或外部舱体50,其沿圆周包围风扇38和/或核心涡轮发动机16的至少一部分。应了解,舱体50可构造成相对于核心涡轮发动机16由多个沿周向间隔开的出口导流板52支撑。此外,舱体50的下游区段54可在核心涡轮发动机16的外部分上延伸,以便在其间限定旁路气流通道56。

在涡扇发动机10的操作期间,大量空气58穿过舱体50和/或风扇区段14的相关联入口60进入涡扇10。当大量空气58横穿风扇叶片40时,如由箭头62指示的空气58的第一部分被引导或导引到旁路气流通道56中,且如由箭头64指示的空气58的第二部分被引导或导引到lp压缩机22中。空气的第一部分62和空气的第二部分64之间的比率通常称为旁路比。在空气的第二部分64被导引通过高压(hp)压缩机24并进入燃烧区段26时,空气的第二部分64的压力接着增加,在燃烧区段26处,空气与燃料混合并燃烧以提供燃烧气体66。

燃烧气体66被导引通过hp涡轮机28,在hp涡轮机28处经由连接到外壳体18的hp涡轮定子轮叶68和连接到hp轴或转轴34的hp涡轮转子叶片70的顺序级提取来自燃烧气体66的热能和/或动能的一部分,因此使hp轴或转轴34旋转,进而支持hp压缩机24的操作。燃烧气体66接着被导引通过lp涡轮机30,在lp涡轮机30处经由连接到外壳体18的lp涡轮定子轮叶72和连接到lp轴或转轴36的lp涡轮转子叶片74的顺序级提取来自燃烧气体66的热能和动能的第二部分,因此使lp轴或转轴36旋转,进而支持lp压缩机22的操作和/或风扇38的旋转。

燃烧气体66随后被导引通过核心涡轮发动机16的喷气排气喷嘴区段32以提供推进力。同时,当空气的第一部分62在从涡扇10的风扇喷嘴排气区段76排出之前被导引通过旁路气流通道56时,空气的第一部分62的压力显著增大,从而也提供推进力。hp涡轮机28、lp涡轮机30和喷气排气喷嘴区段32至少部分地限定热气体路径78,以用于将燃烧气体66导引通过核心涡轮发动机16。

在一些实施例中,涡扇发动机10的部件,具体地说热气体路径78内或限定热气体路径78的部件,可包括复合材料,例如陶瓷基复合(cmc)材料、聚合物基复合(pmc)材料,或具有高温能力的其它合适的复合材料。复合材料通常包括内嵌于例如聚合物或陶瓷材料等基质材料中的纤维加强材料。加强材料充当复合材料的负荷承载组成,而复合材料的基质用以将纤维结合在一起且充当借以将外部施加的应力传输和分布到纤维的媒介。

示例性cmc材料可包括碳化硅(sic)、硅、二氧化硅或氧化铝基质材料及其组合。陶瓷纤维可嵌入基质内,例如氧化稳定的增强纤维,包括如蓝宝石和碳化硅(例如,textron的scs-6)的单丝;以及粗纱和纱线,包括碳化硅(例如,nipponcarbon的ubeindustries的和dowcorning的)、硅酸铝(例如,nextel的440和480);以及短切的晶须和纤维(例如,nextel的440和)和任选地陶瓷颗粒(例如,si、al、zr、y以及它们的组合的氧化物)和无机填充剂(例如,叶蜡石、硅灰石、云母、滑石、蓝晶石和蒙脱石)。举例来说,在某些实施例中,将纤维束形成为增强带,例如单向增强带,所述纤维束可以包括陶瓷耐火材料涂层。多个带可叠置在一起(例如,作为叠层)以形成预成型部件。纤维束在形成预成型件之前或在形成预成型件之后可用浆料组合物浸渍。预成型件可随后经受热处理,例如固化或烧穿,以在预成型件中产生高焦化残余物,且随后经受化学处理,例如利用硅的熔融浸渗,以获得由具有所需化学组合物的cmc材料形成的部件。在其它实施例中,cmc材料可形成为例如碳纤维织物而不是形成为带。

类似地,pmc材料通常通过用树脂(预浸体)浸渍织物或单向带继之以固化而制造。在浸渍之前,织物可被称为“干”织物,且通常包括两个或更多纤维层(层)的堆叠。纤维层可由多种材料形成,其非限制性实施例包括碳(例如,石墨)、玻璃(例如,玻璃纤维)、聚合物(例如,)纤维和金属纤维。纤维加强材料可以以长度通常小于两英寸且更优选小于一英寸的相对短的短切纤维或较长连续纤维的形式使用,后者常常用于制造编织品或单向带。可通过将干纤维分散到模具中,且接着使基质材料在加强纤维周围流动或通过使用预浸体来产生pmc材料。举例来说,多层预浸体可堆叠到零件的恰当厚度和定向,且接着树脂可固化和凝固以显现纤维加强的复合零件。用于pmc基质材料的树脂可通常被分类为热固物或热塑物。热塑性树脂通常分类为归因于物理而非化学改变当加热时可反复地软化和流动且当充分冷却时硬化的聚合物。热塑性树脂的值得注意的实施例类别包括尼龙、热塑性聚酯、聚芳基醚酮和聚碳酸酯树脂。已经预期在航空应用中使用的高性能热塑性树脂的特定实施例包括聚醚醚酮(peek)、聚醚酮酮(pekk)、聚醚酰亚胺(pei)和聚苯硫醚(pps)。相比而言,一旦完全固化为硬的刚性固体,热固性树脂就在加热时不经历明显的软化,而是在充分加热时热分解。热固性树脂的值得注意的实施例包括环氧树脂、双马来酰亚胺(bmi)和聚酰亚胺树脂。

如前所述,可能需要由例如cmc或pmc材料等复合材料形成发动机10的部件,例如热气体路径78内的或限定热气体路径78的部件,例如定子轮叶68、72、涡轮转子叶片70、74和/或其它部件。所述部件可由复合材料的多个层形成,所述层叠置在一起和/或与例如层封装、预成型件和/或复合层的堆叠等其它子组件组装,以限定复合部件。然而,在复合层的后续加工期间,层可相对于彼此和/或相对于其它子组件移动,这可能在组件中留下空隙。尽管例如复合基质的轧制件等填充物材料可插入到空隙中,但在不使用填充物材料的情况下子组件之间的较好最终组装配合将是合乎需要的。子组件之间的较好配合可通过减小组装和加工期间子组件之间的相对运动以及通过使一个或多个子组件成形以更精确地与邻近子组件配合来实现。子组件之间的改进的配合可大体上排除对填充物材料的需要,且可减少复合部件分层的情形。此类复合部件还可具有以下优点:引发裂缝的风险减小、良品率增加、废品率降低、规格外部件的数目减少,且负荷承载能力得以改进,这可改进零件寿命。此外,此类复合部件可改善在翼上的时间且减少计划外的维修请求。

图2到5示出了用于形成根据本发明的示例性实施例的复合部件的方法。如下文中更详细地解释,示例性方法包括对复合层的叠置件或复合层封装进行机械加工,此时叠置件处于生坯状态以使叠置件中层之间的相对移动以及叠置件和可与叠置件组装的任何其它子组件之间的相对移动最小化。子组件可包括湿润或压紧的其它复合层、复合层封装、预成型件等。所述一个或多个子组件还可能在与复合层叠置件组装之前已在生坯状态中进行机械加工,使得子组件可与抵靠着另一子组件的经机械加工表面定位的一个子组件的经机械加工表面组装。

参看图2,所述方法包括叠置多个复合层100,即例如cmc或pmc材料等复合材料的多个层。层100可叠置在工具、心轴、模具或其它合适的支撑装置或表面上。可选地,所述多个复合层100的每一复合层100例如从如先前描述的带切割,使得每一层100加大尺寸。也就是说,所述多个复合层100中的每一个比层的最终长度长,以提供机械加工储备(machinestock)用于将生坯状态层封装机械加工到如本说明书较详细描述的预定尺寸。所述多个复合层100形成复合层叠置件102。在一些实施例中,复合层叠置件102可以是层封装叠置件(其还可被称为复合预成型件)等,其可通常被称作复合层叠置件。

转向图3,在所述多个复合层100叠置以形成复合层叠置件102之后,叠置件102经部分加工以形成生坯状态叠置件104。举例来说,叠置件102可压实且接着在高压釜(autoclave)中加工。所述压实可在大气压下(即,在室温和压力下)执行。与标准高压釜循环相比,高压釜处理可在降低的温度、减小的压力下和/或较短时间量内执行。在一些实施例中,部分处理叠置件102可涉及仅压实,即,叠置件102可被压实而不同时进行缩减的高压釜循环。在其它实施例中,为了部分处理叠置件102,叠置件可经历缩减的高压釜循环,而不是单独地压实。

在部分加工之后,形成叠置件102的复合层100保持一定的柔性和延展性。此柔性和延展性可帮助对叠置件102进行机械加工和/或将一个或多个子组件与叠置件102组装。也就是说,部分加工叠置件102实现足以获得适于生坯状态叠置件104的进一步处置和操纵的强度的压密和固化水平。相比而言,标准高压釜循环通常执行为最终叠层和/或叠置件组件的处理的一部分以获得最终部件尺寸且使部件预成型件硬化。更具体地说,标准高压釜循环经由对复合组分的完整干燥和/或固化而赋予最终层和/或叠置件硬度,且经由对层和/或子组件的完全压密来产生复合部件的最终尺寸。

此外,在其中在高压釜中处理叠置件102的实施例中,叠置件102可使用软和/或硬加工工具进行高压处理。举例来说,叠置件102可使用金属加工工具,即硬加工工具进行高压处理,所述金属加工工具经成形以赋予叠置件102所要形状。作为另一实施例,叠置件102可使用例如真空袋等软加工工具进行高压处理,例如叠置件102可支撑于金属工具上,且接着叠置件102和工具可被装袋,且从袋移除空气以将压力施加到并压实形成叠置件102的叠层100,随后叠置件102如先前描述在缩减的高压釜循环中进行处理。

如前所述,在复合层叠置件102经部分处理之后,叠置件102处于生坯状态且借此形成生坯状态叠置件104,其可为用于形成复合部件的一个子组件。如图3和4中进一步说明,生坯状态叠置件104可例如经机械加工,以通过移除叠置件104内的至少一个层100的一部分而使生坯状态叠置件104的一个或多个边缘或面成形。举例来说,比较图2和3,加大尺寸的层100经机械加工到预定尺寸或特定形状,使得生坯状态叠置件104具有在叠层长度上无不规整性的边缘和/或表面。也就是说,沿着生坯状态叠置件104的边缘,例如沿着叠置件104的两个表面105的交叉处移除至少一个层100的一部分,或者沿着生坯状态叠置件104的从边缘偏移的区段,例如沿着叠置件104的表面105移除至少一个层100的一部分。因为机械加工生坯状态叠置件104为叠置件104提供清晰的边缘或表面,所以层100在其叠置时不必完全对准,例如不完全对准的层100可机械加工到大体上均一长度。此外,复合层100可在方法的部分加工部分期间(具体地说,压实期间)相对于彼此移动或移位。然而,通过在部分处理层100之后对叠置件104进行机械加工,可移除叠层位置的不规整性,使得层100之间的相对移动不会影响最终部件形状或形成必须用填充物材料填充的空隙。此外,因为叠置件104在其生坯状态中机械加工,所以机械加工过程可被称为生坯机械加工。生坯机械加工可包括以下中的一个或多个:放电机械加工(edm),即edm钻孔;激光机械加工;精度机械加工;或其它合适的机械加工或切割技术或工艺。

对生坯状态叠置件104进行机械加工沿着叠置件104限定至少一个经机械加工表面106或经机械加工边缘。如图4中所示出,另一子组件108,例如另一生坯状态复合叠置件、复合预成型件、多个湿润的复合层(例如,未压密或未压实的复合层)和/或多个压紧或压实的复合层,可与生坯状态叠置件104组装,且具体地说可抵靠着经机械加工表面106定位。更具体地说,在机械加工之后,生坯状态叠置件104可与一个或多个子组件108组装。在一些实施例中,子组件108可包括类似于生坯状态叠置件104的经机械加工表面106的经机械加工表面110,例如子组件108可以是经生坯机械加工以限定经机械加工表面110的另一生坯状态叠置件。当生坯状态叠置件104与子组件108组装时,子组件108的经机械加工表面110的至少一部分可抵靠着生坯状态叠置件104的经机械加工表面106的至少一部分定位。在此类实施例中,经机械加工表面106与经机械加工表面110介接使得组件包括内部机械加工界面。在其它实施例中,子组件108可缺乏经机械加工表面110,使得当与子组件108组装时生坯状态叠置件104的经机械加工表面106并不抵靠着另一经机械加工表面定位,或简单地,生坯状态叠置件104的经机械加工表面106抵靠着子组件108的未经机械加工表面定位。

如图4所示,生坯状态叠置件104的经机械加工表面106经精确限定以与子组件108配合。也就是说,经机械加工表面106对应于经机械加工表面106定位所抵靠的子组件108且所述子组件108的轮廓互补。因此,与未经机械加工的叠置件相比,对叠置件104进行生坯机械加工可帮助提供与其它子组件的较好配合。子组件之间的较精确配合可帮助使例如子组件后续处理以形成复合部件期间子组件之间的打滑或相对移动最小化。此外,将一个或多个生坯状态子组件与其它子组件组装还可帮助使处理期间子组件之间的相对移动最小化。

参看图5,在一些实施例中,生坯状态叠置件104可以是生坯状态层封装子组件104,其与若干其它子组件组装以限定涡轮喷嘴翼型件112。在此类实施例中,其它子组件可包括腔预成型件114和多个复合缠绕层116,所述复合缠绕层缠绕在生坯状态层封装104和腔预成型件114周围。也就是说,组装子组件包括抵靠着腔预成型件114定位生坯状态层封装104,且接着将所述多个复合缠绕层116缠绕在生坯状态层封装104和腔预成型件114周围。如图3和5中所示,生坯状态层封装104的经机械加工表面106抵靠着腔预成型件114定位。更具体地说,生坯状态层封装104经机械加工以沿着腔预成型件114的后边缘114a与腔预成型件114的大体弯曲形状配合。如先前描述,在一些实施例中,腔预成型件114也可处于生坯状态且可能已沿着后边缘114a进行生坯机械加工,使得生坯状态层封装104的经机械加工表面106抵靠着腔预成型件114的经生坯机械加工表面定位。

在子组件组装好以大体限定复合部件(例如,在所描绘的实施例中,涡轮喷嘴翼型件112)之后,处理子组件以形成复合部件。举例来说,处理可包括使用标准高压釜循环而非如先前描述的缩减的高压釜循环对组装好的子组件104、114、116进行高压处理,以形成经高压处理的坯体。在其中复合材料为cmc材料的实施例中,所述经高压处理的坯体接着可经受焙烧(或燃烧)以形成经烧结坯体,随后进行致密化以产生致密化的cmc部件,所述致密化的cmc部件是单片部件,即所述部件是连续的cmc材料片。举例来说,在高压处理之后,可将部件放置在炉中以烧掉任何心轴形成材料和/或用于形成cmc层的溶剂,且将溶剂中的粘合剂分解,接着放入具有硅的炉中以将层的陶瓷基质前体转换为cmc部件的基质的陶瓷材料。由于燃烧/焙烧期间粘合剂的分解,硅熔融且浸渗与基质形成的任何孔隙;硅对cmc部件的熔融浸渗使cmc部件致密化。然而,可使用任何已知致密化技术执行致密化,包括但不限于silcomp、熔融-浸渗(mi)、化学蒸汽浸渗(cvi)、聚合物浸渗和裂解(pip)以及氧化物/氧化物工艺。在一个实施例中,致密化和焙烧可在真空炉或惰性气氛中进行,所述惰性气氛具有1200℃以上的温度下建立的气氛以允许硅或另一种或多种适当材料熔融浸渗到部件中。

如图5的示例性实施例中所示,涡轮喷嘴翼型件112包括与凸面抽吸侧120相对的凹面压力侧118。翼型件112的相对的压力侧和抽吸侧118、120沿着翼型跨度(未示出)在内部端与外部端之间径向延伸。此外,翼型件112的压力侧和抽吸侧118、120在前边缘122和相对的后边缘124之间轴向延伸,且压力侧和抽吸侧118、120限定翼型件112的外表面126。此外,腔预成型件114限定腔128,腔128可收纳冷却流体流,例如从hp压缩机24分流的加压空气流,以用于冷却翼型件112。

可选地,在处理之后,复合部件可视需要进行精机械加工,且用例如环境屏障涂层(ebc)等一个或多个涂层涂覆。举例来说,如图5所示缠绕在层封装叠置件104和腔预成型件114周围的复合缠绕层116可加大,使得层116的一部分延伸超出涡轮喷嘴翼型件112的所要后边缘124。相应地,在处理之后,层116可经机械加工以限定后边缘124。在其它实施例中,层116可在子组件经高压处理之后但在子组件被焙烧和致密化之前进行机械加工。

当然,相对于图2到5描述的方法仅借助于实施例而提供。作为一实施例,可利用用于压实和/或固化复合层以及用于致密化cmc部件的其它已知方法或技术。或者,可使用这些或其它已知工艺的任何组合。此外,尽管图5将涡轮喷嘴翼型件112描绘为使用以上方法形成的示例性复合部件,但所述方法还可用于形成其它复合部件。举例来说,复合部件可以是翼型件后边缘部分;涡轮转子叶片翼型件;一体式涡轮转子叶片和平台;涡轮喷嘴条;具有一体式内部条、翼型件和外部条的涡轮喷嘴;燃烧器衬垫;燃烧器拱顶;护罩等。

作为一个实施例,图6a到6d示出本发明的另一示例性实施例。图6a描绘叠置以形成复合层叠置件102的多个复合层100。应了解,复合层叠置件102大体形成复合层100的块状或立方体状堆叠。图6b示出将通过对复合层100进行生坯机械加工而限定的预成型件104的概观。相应地,图6a和6b中示出的复合层叠置件102经部分加工,例如压实和/或高压处理以如上文相对于图3所描述压紧叠层100,从而形成生坯状态叠置件104。随后,如图6c中所示,生坯状态叠置件104经机械加工以限定一个或多个经机械加工表面106。举例来说,如对于叠置件102所描述大体呈块状或立方体状的生坯状态叠置件104可沿着第一表面105a、第二表面105b和第三表面105c机械加工以限定图6b中描绘的生坯状态叠置件形状。也就是说,可沿着生坯状态叠置件104的边缘,例如沿着叠置件104的两个表面105的交叉移除至少一个层100的一部分,或者可沿着生坯状态叠置件104的从边缘偏移的区段,例如沿着叠置件104的表面105移除至少一个层100的一部分。参看图6d,经机械加工的叠置件104随后可与例如复合缠绕层116等其它复合预成型件或层组装,且组件可经处理以形成例如翼型件后边缘部分等复合部件,如相对于图4和5所描述。

相应地,如本说明书所描述,提供用于使复合部件形成期间复合子组件之间的相对运动最小化的方法。具体地说,本说明书所描述的方法利用至少一个经生坯机械加工的子组件,例如叠置件、叠层封装、预成型件或叠层堆叠,以提供经生坯机械加工的子组件和邻近子组件之间的较好或较精确配合,这可使后续处理期间子组件之间的相对运动最小化。此外,对子组件中的一个或多个进行生坯机械加工以提供邻近子组件可定位所抵靠的经机械加工表面可帮助使沿着经机械加工表面的子组件之间的相对运动最小化。通过使子组件之间的相对运动最小化或排除子组件之间的相对运动,可减小或排除子组件之间的空隙。由此,可减少或排除对于用于填充空隙的填充物材料的需要,和/或可减小致密化材料(例如在以上实施例中,硅)的体积。此外,可减少复合部件分层的情形,且所述复合部件还可具有以下优点:引发裂缝的风险减小、良率增加、废品率降低、规格外部件的数目减少(例如,本说明书所描述的方法改进尺寸控制,借此增加尺寸容差内的复合部件的数目),且负荷承载能力得以改进,这可改进零件寿命。此外,此类复合部件可改进在翼上的时间且减少计划外的维修请求。所属领域的一般技术人员还可实现本说明书中所描述的的其它优势。

此书面描述使用实施例来公开本发明,包括最佳模式,并且还使所属领域的技术人员能够实践本发明,包括制造和使用任何装置或系统以及执行任何所并入的方法。本发明的可获专利的范围由权利要求书限定,并可包括所属领域的技术人员所想到的其它实施例。如果此类其它实施例包括与权利要求书的字面意义相同的结构要素,或如果此类实施例包括与权利要求书的字面意义无显著差异的等效结构要素,那么此类实施例意图处于权利要求书的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1