本发明涉及一种风力涡轮机,该风力涡轮机包括轮毂和多个叶片,所述叶片经由叶片轴承被可旋转地附接到轮毂,所述叶片轴承包括内圈和外圈,所述内圈联接到相应叶片并且所述外圈联接到所述轮毂、或者所述内圈联接到所述轮毂并且所述外圈联接到相应叶片,并且在这些圈之间提供滚动元件。
背景技术:
如果风作用到风力涡轮机的叶片上,轮毂旋转。如公知的,这种旋转最终被传递到发电机上。通常,叶片经由叶片轴承被可旋转地附接到轮毂,从而允许相应的叶片变桨,这例如取决于风力或者风向等等。通常,设置在涡轮机塔架顶部的机舱被导向成迎风,使得叶片直接地取向成朝向风向,所述机舱包括轮毂和相应的部件。当风吹过时,可产生大的拍打弯曲力矩,这会导致如下风险,叶片轴承可能会轻微地打开从而导致在内圈和外圈(具体地,设置在内圈和外圈处的相应滚道)之间的不均等的负载分布,这将因此降低轴承的寿命。因此,作出努力以通过增加外圈尺寸来加固叶片轴承的外圈,因此增加外圈刚度并且减少外圈的变形。这增加了轴承的重量以及特种钢(例如42crmo4)的量,轴承圈由所述特殊钢制成。另一方法是通过在离感兴趣的位置更远处增加材料来增加轮毂的刚度,但是这种方法也导致增加额外材料并且因此增加重量。
技术实现要素:
本发明的目的是提供一种改进的风力涡轮机。
为了解决这个问题,如上文提及的风力涡轮机的特征在于,外圈或者内圈具有带有周向变化厚度的截面。
创新性叶片轴承的外圈或者内圈具有周向变化的厚度。例如外圈的孔相对于外圈的中心来说是略微偏心的,内圈设置在该外圈的孔内,该外圈可具有圆形的外周或稍微椭圆的外周。因此,内圈相对于外圈是略微偏心的。外圈的这种变化的厚度允许轴承足够刚硬,以在由风力所引起的施加到轴承上的负载导致需要被加强的区域中支撑其自身。在另一方面,轴承在其中轮毂是刚硬的并且负载较低的区域中是足够薄的。所以,轴承(具体地,外圈)的设置根据轮毂处的源自于作用在叶片(具体地,轴承和轮毂)上的风力的负载分布被选择。这允许在高负载以及更软的伴随或周围结构(即,轮毂)的区域或位置中增加外圈及因此整个轴承的刚度,而不在较低负载的位置或区域中添加额外的材料。
作为替代,内圈的孔可以是偏心的而外圈的孔是居中的。该实施例也展示了上述优点。
厚度自身在最大和最小厚度之间连续地变化。借助当前的锻造技术容易制造具有创新性变化厚度的圈,该变化厚度尤其在最大和最小厚度之间连续地变化。有可能制造具有宽范围变化尺寸或直径的圈并且因此制造用于不同叶片或轮毂尺寸的轴承。要注意的是,外圈可以是一件式圈或者可以由多个圈部段制成,内圈也是如此。
优选地,外圈或者内圈被设置成使得,具有最大厚度的区段被定位成朝向轮毂的前侧并且具有最小厚度的区段被定位成朝向轮毂的后侧。这意味着外圈或内圈的最厚区段被导向成朝向风向,而圈的最薄区段被定位在相对侧。考虑到当前风力涡轮机设置的轮毂处的真实负载分布,该设置是非常有利的。
在又一实施例中,轮毂包括具有表面的附接区域,所述表面具有与外圈或内圈的附接侧表面相对应的几何结构。因为由外圈或者内圈的厚度沿周向方向变化导致外圈或者内圈的侧表面的表面区域沿周向方向变化,所以有利的是,该表面几何结构也被实现在轮毂的附接区域处,外圈或者内圈经由螺栓等被附接到所述附接区域。这允许实现外圈或者内圈在轮毂处的完好固定和支撑。
本发明还涉及一种用于风力涡轮机的轴承,所述轴承用于将叶片附接到轮毂,所述轴承包括内圈和外圈,所述内圈要被附接到叶片并且所述外圈要被附接到轮毂、或者所述内圈要被附接到轮毂并且所述外圈要被附接到叶片,滚动元件被提供在所述圈之间。该轴承的特征在于,外圈或者内圈具有带有周向变化厚度的截面。
该厚度优选地在最大和最小厚度之间连续地变化。
该轴承(具体地,内圈和外圈)当然由钢、优选地42crmo4制成,但这不是结论性的示例,因为也可以使用其他的钢。
附图说明
本发明的更多细节和优点可从结合附图的优选实施例的下述详细描述得出,在附图中:
图1示出了具有创新性叶片轴承的风力涡轮机的示意性局部图;
图2示出了沿图1中的线ii–ii截取的截面图;
图3示出了沿图1中的线iii–iii截取的截面图;以及
图4示出了第二实施例的创新性叶片轴承的外圈的原理性草图。
具体实施方式
图1示出了包括创新性叶片轴承2的创新性风力涡轮机1的局部图。图1示出了轮毂3和主轴4,该主轴将轮毂的转动传递给未示出的发电机。
通常,轮毂3包括三个叶片,所述叶片经由相应的叶片轴承2被附接到轮毂,从而允许相应的叶片在需要的时候变桨。
每个叶片轴承2包括:外圈5,其在这个示例中被附接到轮毂3;以及内圈6,叶片被附接到所述内圈。在如图2和图3中所示的相应截面图中示出了附接区域,具体地轴承区域。如这些图所描绘的,外圈5经由相应的螺栓7附接到轮毂3,所述螺栓延伸通过设置在外圈5和轮毂3中的相应孔8、9。外圈5的侧表面10安置在轮毂3的相应附接区域表面11上。
内圈6也经由相应的螺栓12被附接到叶片13,所述叶片的仅仅叶片根部14被示出。
如图2和图3所示,在外圈5和内圈6之间提供了相应的滚动元件15,所述滚动元件在相应的滚道上运行并且允许内圈6相对于不旋转的外圈5旋转,从而允许叶片13变桨。
如图1所示,外圈5的厚度周向地变化。在第一区域16中,外圈5的厚度较小或者具有最小厚度值。在相对侧在区域17中,外圈5的厚度明显地更大并且具有最大值。区域16中的最小厚度以图2中的厚度d示出,而区域17中的最大厚度以图3中的厚度d示出。如图1清楚地示出的,区域17被定位在轮毂的前端处朝向风向w,而具有较小厚度的区段16则指向相对侧。
如图1示出的,具有小厚度的区域16可延伸约180度。然后,厚度连续地增加到最大值。当然也可能的是,区域16更小,使得厚度的增加可直接在最小厚度位置开始并且连续增加到在外圈5的相对侧处的最大厚度位置。
图2和图3示出了沿线ii–ii(图2)和线iii–iii(图3)截取的相应截面。
如图2和图3之间的比较所清楚地示出的,以截面示出的外圈5具有变化的厚度。圈厚度在区域17处的尺寸是区域16处的尺寸几乎两倍。该变化的截面允许:轴承是足够刚硬的以在需要加固的区域中(即,在轮毂的前侧处)支撑其自身,而轴承(具体地,外圈)在其中轮毂足够刚硬并且施加到该装置上的负载较低的地方是足够薄的。
如图2和图3还示出的,轮毂的几何结构被选择成对应于外圈5的几何结构。如图2和图3的比较还示出的,轮毂3的附接区域表面11示出了变化的几何结构,附接区域表面在其延伸方面对应于外圈5的几何结构或延伸,使得在轮毂与外圈之间还存在相应的表面附接。
最后,如图2和图3还示出的,内圈6具有恒定的厚度。
尽管如上文所描述的,图1示出了具有第一区段16的外圈,所述第一区段延伸约180度且具有小的恒定厚度d,该厚度然后连续地增加在区段17中达到最大值d,图4示出了创新性叶片轴承2的外圈的另一实施例。该外圈的特征在于,外圈5的厚度沿周向从最小值d连续增加到相对的外圈侧处的最大值d。
与外圈5的特定几何结构无关,可经由当前的锻造技术容易地生产不同型号的外圈5的上述构造。相应的外圈5可以是一件式圈或者可以是分段式圈,该分段式圈包括多个单独的圈部段。
替代性地,内圈可具有变化的厚度。此外,圈到轮毂和叶片上的附接也可以是轮毂和叶片到圈上的附接。
尽管已经参考优选实施例详细地描述了本发明,本发明并不局限于所公开的示例,本领域技术人员能够从所公开的示例得到其他的变形而不偏离本发明的范围。