本发明涉及一种根据独立专利权利要求的前序部分的用于内燃机的废气后处理系统以及用于内燃机的废气后处理的方法。
背景技术:
废气法规的连续的加重对车辆制造商提出了高要求,其通过相应的用于减少发动机未处理排放的措施和通过相应的废气后处理来解决。随着法规级别eu6的引入针对奥拓发动机(ottomotor)规定了颗粒数量的极限值,其在许多情况中使得奥拓颗粒过滤器的使用成为必要。这样的炭黑颗粒特别在内燃机的冷启动之后由于未完全燃烧结合过化学计量的燃烧空气比以及在冷启动期间的冷的气缸壁而形成。冷启动阶段由此对于法律规定的颗粒极限值的遵守而言是起决定性的。在行驶运行中这样的奥拓颗粒过滤器进一步以炭黑加载。为了不使废气背压过强地升高,必须连续地或周期地使该奥拓颗粒过滤器再生。废气背压的升高可导致内燃机的更多消耗、功率损失和运转平稳的损害直至点火中断。为了将保留在奥拓颗粒过滤器中的炭黑的热氧化利用氧气来执行,足够高的温度水平连同同时在奥拓发动机的废气设备中存在的氧气是必要的。因为先进的奥拓发动机通常在没有氧气过量的情况下以化学计量的燃烧空气比(λ=1)来运行,因此对此需要附加的措施。对此作为措施例如考虑通过点火角度调节的温度提高、奥拓发动机的暂时稀薄调节(magerverstellung,有时称为贫调节)、次级空气到废气设备中的吹入或这些措施的组合。优选地迄今应用在滞后方向上的点火角度调节结合奥拓发动机的稀薄调节,因为该方法在没有附加构件的情况下够用,并且在奥拓发动机的大多数运行点中可提供足够的氧气量。
由于在奥拓发动机的情况中的良好的效率,在底盘位置中的颗粒过滤器的再生在一定的运行情况中是不可行的,从而在底盘部位中的颗粒过滤器的再生需要特定的行驶循环。颗粒过滤器的靠近发动机的定位是适宜的,因为由此在颗粒过滤器处存在更高的废气温度,并且使到再生温度上的加热变得容易。在带有起三元催化作用的涂层的三元催化器、即所谓的四元催化器的情况中的另一问题在于如下事实,即涂层可具有强的老化现象,从而对于气态的有害物质的转变而言在靠近发动机的位置中可能需要附加的三元催化器。
由文件de102008036127a1已知一种用于内燃机的废气后处理的方法,在其废气通道中布置有颗粒过滤器和三元催化器。在此,颗粒过滤器作为废气后处理的第一部件布置在内燃机的排出部下游。在颗粒过滤器下游布置有三元催化器。在此,废气中的氧气含量为了颗粒过滤器的再生经由三元催化器的λ调节而升高。
文件de102010046747a1公开了一种用于奥拓发动机的废气后处理系统以及一种用于废气后处理的方法。在此,在三元催化器的下游布置有颗粒过滤器,其中为了使保留在颗粒过滤器中的炭黑颗粒再生可提供次级空气系统,其在三元催化器的下游和颗粒过滤器的上游将新鲜空气吹入到废气设备中。
此外,由文件de102012204779a1已知一种用于内燃机的废气后处理系统,在其中在废气设备中布置有可电气加热的三元催化器,并且在可电气加热的三元催化器下游布置有另一三元催化器。在此,可为了减排将次级空气带入到废气设备中。
技术实现要素:
本发明的任务在于,在所有行驶循环中确保颗粒过滤器的再生温度的达到,改善废气后处理系统的老化特性并且克服由现有技术已知的缺点。
根据本发明,该任务通过用于内燃机的带有废气设备的废气后处理系统来解决,其与内燃机的排出部相连接,其中,废气设备包括废气通道,在其中在内燃机的废气通过废气通道的流动方向上作为第一减排部件靠近发动机地布置有颗粒过滤器,在颗粒过滤器下游同样在靠近发动机的位置中布置有可电气加热的三元催化器,并且在可电气加热的催化器的下游布置有另一三元催化器。颗粒过滤器和可电气加热的三元催化器的靠近发动机的布置就此而言可理解成废气后处理部件以从内燃机的排出部起少于80cm、尤其少于50cm、特别优选地少于35cm的废气行进长度的布置。由此可实现颗粒过滤器和可电气加热的三元催化器的加速加热,尤其在内燃机的冷启动之后。通过颗粒过滤器的靠近发动机的位置,更少的废热经由废气通道的壁而失去,从而其相较于在内燃机的底盘位置中的颗粒过滤器更容易在颗粒过滤器处实现为了颗粒过滤器的再生所需的在颗粒过滤器中保留的炭黑颗粒的氧化温度。
通过在从属权利要求中列举的特征,根据本发明的用于内燃机的废气后处理系统的有利的改善方案和改进方案是可行的。
根据本发明的一优选的和有利的实施形式设置成,内燃机具有用于将次级空气带入到废气通道中的次级空气系统,其中,次级空气系统的导入部位布置在内燃机的排出部处或在排出部的下游和在颗粒过滤器的上游。在此,将次级空气吹入到内燃机的热的排出通道中,其中,未燃烧的废气成分与次级空气仍在排出通道中放热地反应,并且由此负责用于废气的加热。由此,可电气加热的三元催化器达到其起燃温度的时间可进一步缩短。此外可使用次级空气系统,以便于执行颗粒过滤器的再生并且将对于再生所需的氧气带入到颗粒过滤器上游的废气通道中。由此可在颗粒过滤器的再生的情况中相应地匹配内燃机的运行状态,从而内燃机不必以过化学计量的燃烧空气比来运行,以便实现颗粒过滤器的再生。
在本发明的一有利的改善方案中设置成,可电气加热的三元催化器具有电气加热元件、尤其电气加热盘片和金属承载结构。电气加热元件可以简单的方式借助于电气加热电阻与内燃机的废气流无关地来加热,在此,于是当内燃机被关掉时,电气加热元件的加热也是可行的,尤其直接在内燃机的启动之前。通过金属的承载元件可实现特别良好的热传递,从而在电气加热元件中产生的热可在无较大损失的情况下被传递到金属的承载元件上。此外,金属的承载结构允许可电气加热的三元催化器的相应薄壁的实施方案,由此可减少流动阻力且由此可减少废气背压。
在此,特别优选的是,电气加热元件借助于销钉连接固定在可电气加热的三元催化器的金属承载结构处。通过销钉连接可实现加热盘片在可电气加热的三元催化器的金属承载结构处的稳定的支承,从而避免可电气加热的三元催化器的机械固定和由于振动的、松动的加热盘片引起的震荡。
备选地在本发明的一有利的实施变型方案中设置成,可电气加热的三元催化器具有可直接电气加热的基底(substrat)。通过可直接电气加热的基底直接在基底中产生热,从而基底(尤其在内燃机的冷启动之后)可在没有加热盘片的另外的热传递的情况下加热到废气上并且从废气加热到催化器上。
根据本发明的一优选的实施形式设置成,在废气通道中在颗粒过滤器上游布置第一氧传感器(lambdasonde,有时称为λ传感器),并且在可电气加热的催化器下游和在另一三元催化器的上游布置第二氧传感器。由此可利用氧传感器对不仅实现内燃机的λ调节而且实现可电气加热的三元催化器的随车诊断,因为未涂层的颗粒过滤器不影响λ调节。在此,第一氧传感器优选地实施成宽带式氧传感器,以便于实现关于废气中氧气含量的定量说明。第二氧传感器可实施成跳跃式氧传感器(sprung-lambdasonde),以便于减小成本并且由此提供关于废气中氧气余量的定性说明。
根据本发明的一有利的实施形式设置成,颗粒过滤器未涂层并且不带有氧气储存器地来实施。在此,颗粒过滤器不仅缺失三元催化的涂层,并且缺失用于选择性、催化还原氮氧化物的涂层。在此,特别优选的是,颗粒过滤器基本上不带有氧气储存器地来实施并且不具有氧气储存能力。由此可防止颗粒过滤器的特征的老化引起的变化,使得颗粒过滤器在其使用寿命上具有大致相同的特性。此外,可以该方式通过共同的氧传感器对来监控颗粒过滤器和可电气加热的三元催化器的功能,其中,第一氧传感器布置在颗粒过滤器的上游,且第二氧传感器布置在可电气加热的三元催化器的下游。因为颗粒过滤器作为第一废气后处理部件布置在内燃机的排出部之后,颗粒过滤器尤其在内燃机的全负载运行的情况中以高的废气温度施加,其另外引起催化涂层的加强的热老化。此外可通过放弃颗粒过滤器的涂层以少的单元格(zelle)来实施,由此减少颗粒过滤器的热质量并且有助于颗粒过滤器的加热。此外附加地减少废气背压,由此可减少废气设备中的流动损失,并且由此可提高内燃机的效率。这可在其余不变化的框架条件(rahmenbedingung,有时称为基本条件)的情况中用于更多的功率或减小的消耗。
根据本发明提出用于内燃机利用根据本发明的废气后处理系统进行废气后处理的方法,包括如下步骤:
-从内燃机的发动机启动起将可电气加热的三元催化器电气加热到可电气加热的三元催化器的起燃温度上,
-从内燃机的启动起利用内燃机的废气流加热颗粒过滤器、可电气加热的三元催化器和另一三元催化器,并且
-使颗粒过滤器再生,其中,颗粒过滤器通过内燃机的废气被加热到再生温度上。
通过根据本发明的方法可在内燃机的冷启动之后立即将至少一个减少有害物质的废气后处理部件、尤其可电气加热的三元催化器加热到起燃温度上,由此实现有害的气态废气成分的有效转变。此外,可提高催化涂层的老化抗性,因为可电气加热的三元催化器在内燃机的全负载运行中不像在第一位置中在排出部之后布置的颗粒催化器那么热。
在用于废气后处理的方法的一优选的实施形式中设置成,在三元催化器中的一个或颗粒过滤器的加热阶段中将次级空气带入到排出侧的气缸盖中或到排出部的下游和颗粒过滤器的上游的废气通道中,以便于通过未燃烧的燃料成分的放热转换来辅助催化器或颗粒过滤器的加热。通过次级空气的吹入可改善从可电气加热的三元催化器的电气加热元件到承载元件上的热传递,此外防止的是,通过电气加热元件局部导致过热,因为所形成的热对流地(konvektiv)通过次级空气传递到剩余的催化器上。
只要在个别情况中未另外实施,本发明的在该申请中不同的提到的实施形式可有利地相互组合。
附图说明
接下来在实施例中根据从属的附图阐述本发明。相同的构件或带有相同功能的构件在此在不同的附图中以相同的附图标记表示。其中:
图1显示了带有根据本发明的废气后处理系统的内燃机的第一实施例;
图2显示了带有根据本发明的废气后处理系统的内燃机的另一实施例,其中,废气后处理系统附加地具有用于将新鲜空气带入到废气设备中的次级空气系统;以及
图3显示了线图,在其中示出了在执行根据本发明的用于废气后处理的方法的情况中的在废气设备中的温度曲线。
具体实施方式
图1显示了内燃机10的示意图,其排出部12与废气设备20相连接。内燃机10实施成奥拓发动机,其借助于火花塞16被外部点火,并且具有多个燃烧室14。内燃机10优选地实施成借助于废气涡轮增压器30增压的内燃机10,其中,废气涡轮增压器30的涡轮32在排出部12的下游和在第一减排废气后处理部件的上游、尤其在颗粒过滤器24的上游布置。废气设备20包括废气通道22,在其中在废气通过废气通道22的流动方向上布置有颗粒过滤器24,在颗粒过滤器24下游布置有可电气加热的三元催化器26,并且进一步在下游布置有另一三元催化器28。颗粒过滤器24和可电气加热的三元催化器26在此优选地分别靠近发动机地,也就是说以从内燃机10的排出部12起少于80cm废气行进长度、尤其少于50cm废气行进长度的间距来布置。另一三元催化器28优选地布置在机动车的底盘位置中,且由此在远离发动机的位置中,也就是说以从内燃机的排出部12起大于100cm废气行进长度的间距来布置。
在废气设备20中可附加地布置另外的催化器、尤其另一三元催化器、nox-储存催化器或用于选择性地催化还原氮氧化物的催化器。在颗粒过滤器24的上游在废气通道22中布置有第一氧传感器50,利用其可测定(ermitteln,有时称为查明)在排出部12的下游和在第一废气后处理部件、即颗粒过滤器24上游的废气的氧气含量λ1。在可电气加热的三元催化器26下游和在另一三元催化器28的上游在废气通道22中布置有第二氧传感器52,利用其可测定在可电气加热的三元催化器26下游和另一三元催化器28上游的废气通道28中的氧气含量λ2。第一氧传感器50优选地实施成宽带式氧传感器并且经由第一信号线路58与内燃机10的控制设备56相连接。第二氧传感器52优选地实施成跳跃式传感器,并且经由第二信号线路60与控制设备56相连接。第一氧传感器50和第二氧传感器52在此构造传感器组件,利用其可调节内燃机10的燃烧空气比λ。附加地可经由传感器组件实现可电气加热的催化器26的随车诊断。
可电气加热的三元催化器26具有电气加热元件34、尤其电气加热盘片以及金属承载结构36。电气加热元件34借助于销钉连接38与金属承载结构相连接,由此实现电气加热元件34的紧固的机械固定。备选地,可电气加热的三元催化器26如同在图2中示出的那样还可具有可电气加热的基底54。此外,在颗粒过滤器24的上游和下游设置有压力传感器,利用其可执行颗粒过滤器24上的压差测量,以用于测定颗粒过滤器24的负载状态。此外可经由压力传感器实现颗粒过滤器24的随车诊断。
在图2中示出了带有废气后处理系统的内燃机的另一实施例。在大致与图1实施的相同结构的情况中,废气后处理系统附加地具有次级空气系统40。次级空气系统40包括次级空气泵46、次级空气线路44以及在次级空气线路44中在次级空气泵46下游和在导入部位42上游布置的次级空气阀48。导入部位42构造在内燃机10的排出侧的气缸盖18中,以便于能将次级空气带入到尽可能热的废气中并且由此有助于与未燃烧的燃料成分的放热反应。备选地,导入部位42还可构造在颗粒过滤器24上游的部位处,从而颗粒过滤器24和在颗粒过滤器24下游布置的三元催化器26,28可以次级空气供给。可电气加热的三元催化器26具有可电气加热的基底,利用其可直接在可电气加热的催化器26的起催化作用的结构处产生热。备选地,可电气加热的催化器26还可如在图1中示出的那样具有电气加热元件34和金属承载结构36。
在内燃机10的运行中,内燃机的废气引导通过颗粒过滤器24、可电气加热的三元催化器26以及另外的三元催化器28,其中,在废气中包含的炭黑颗粒被从废气流中滤出,并且有害的废气成分被转变成无害的废气成分。通过颗粒过滤器24和可电气加热的三元催化器26的靠近发动机的布置在内燃机10的冷启动之后可实现到起燃温度上的特别快速的加热,以便于在冷启动之后尽可能快速地实现气态有害物质的有效转变。在此,颗粒过滤器24优选地未涂层地、尤其不带有具有氧气储存能力的涂层地来实施。由此可经由氧传感器50,52实现可电气加热的催化器26的诊断。通过颗粒过滤器24作为废气后处理的第一部件的布置,在内燃机10的全负载运行的情况中不如此强烈地使可电气加热的催化器26负载,从而可减少催化涂层的老化。
在图3中示出了在根据本发明的用于废气后处理的方法的进程的情况中在废气设备20的多个部位处的温度曲线。在此,在第一曲线i中示出了直接在颗粒过滤器24下游的温度t1。在第二曲线ii中示出了在激活的电气加热元件34的情况中在可电气加热的三元催化器26中的温度t2。温度t2为此在可电气加热的三元催化器26的构件中部处测定。在此,内燃机10在启动时间点s启动并且同时启动电气加热元件34的电气加热。在第一阶段<100>中,颗粒过滤器24和可电气加热的催化器26被内燃机10的废气穿流并且通过废气加热。平行地通过电气加热元件34加热可电气加热的催化器26,其中,热从加热元件34基本上对流地通过内燃机10的废气流传递到金属承载结构36上。如果可电气加热的催化器26达到其起燃温度tlo,则在第二阶段<110>中实现可电气加热的三元催化器26由电气加热和化学加热构成的组合的加热,因为从该时间点起未燃烧的废气成分可放热地在可电气加热的三元催化器26的催化表面处被转换。如果可电气加热的三元催化器26达到其运行温度,则电气加热元件34被关断。在第三阶段<120>中调整可电气加热的三元催化器26的电气加热,并且通过未燃烧的燃料成分在可电气加热的三元催化器26的起催化作用的表面处的放热反应将温度保持。在第四运行阶段<130>中,于是不仅可电气加热的三元催化器26而且颗粒过滤器24已达到如下温度,在该温度的情况中不再需要另外的加热措施。在第三曲线中为了对比而示出可电气加热的三元催化器26的温度t3,当电气加热元件34不在任何阶段<100>,<110>和<120>中被激活时。
通过次级空气系统40可产生用于热传递的载体流,由此可以已在预启动阶段<90>中以可电气加热的三元催化器24的加热来开始,从而在内燃机10的启动s之后还要更短的时间达到起燃温度tlo。
附图标记清单
10内燃机
12排出部
14燃烧室
16火花塞
18气缸盖
20废气设备
22废气通道
24颗粒过滤器
26可电气加热的三元催化器
28三元催化器
30废气涡轮增压器
32涡轮
34电气加热元件/电气加热盘片
36金属的承载结构
38销钉连接
40次级空气系统
42导入部位
44次级空气线路
46次级空气泵
48次级空气阀
50第一氧传感器/宽带式传感器
52第二氧传感器/跳跃式传感器
54可电气加热的基底
56控制设备
58信号线路
60信号线路
<90>预启动阶段
<100>内燃机的启动阶段
<110>第二阶段
<120>第三阶段
<130>第四阶段
s内燃机的启动
t温度
t1温度
t2在激活的加热元件的情况中的在可电气加热的三元催化器处的温度
t3在解除激活的加热元件的情况中的在可电气加热的三元催化器处的温度
tlo可电气加热的催化器的起燃温度
treg颗粒过滤器的再生温度。