
本发明涉及内燃机的排气净化装置,特别涉及包括用于对排气净化催化剂进行加热的加热装置的排气净化装置。
背景技术:
作为对内燃机的排气中所含的有害气体成分进行净化的技术,在内燃机的排气通路中配置排气净化催化剂的技术正在普及。排气净化催化剂在处于活性温度以上时能够净化排气中的有害气体成分,因此在如内燃机被冷起动的情况等那样排气净化催化剂的温度比活性温度低的情况下,需要使该排气净化催化剂迅速地升温至活性温度以上。另外,近年来,随着内燃机的燃料效率提高技术的进步,排气温度倾向于下降。因此,在内燃机被冷起动的情况等,难以仅通过排气的热使排气净化催化剂迅速地升温至活性温度以上。对此,已知如下方法:在排气净化催化剂的上游配置电加热式的加热器,通过利用该加热器对流入排气净化催化剂的排气进行加热,从而实现排气净化催化剂的早期升温(例如参照专利文献1)。
现有技术文献
专利文献1:日本特开2003-269149号公报
技术实现要素:
另外,在配置于加热器的下游的排气净化催化剂的容量大到一定程度的情况下,为了使排气净化催化剂整体升温至活性温度以上,由加热器进行的排气净化催化剂的加热时间有可能变长。在该情况下,在排气净化催化剂的下游侧端部升温至活性温度以上之前,该排气净化催化剂的上游侧端部有可能过度升温,由此,排气净化催化剂的上游侧端部有可能热劣化。
本发明是鉴于上述实际情况而完成的,其目的在于提供一种能够抑制排气净化催化剂的热劣化,并且能够使该排气净化催化剂迅速升温至活性温度以上的技术。
本发明为了解决上述课题,将排气净化催化剂分割为单位量的热容量相等的前段催化剂和后段催化剂这两个,在这些前段催化剂与后段催化剂之间配置加热装置。并且,分割成两个的催化剂被分割为:前段催化剂的容量相对于内燃机的总排气量的比率为0.3以上且1.5以下。
详细而言,本发明是具备排气净化催化剂和加热装置的内燃机的排气净化装置,该排气净化催化剂被分割为单位量的热容量相等的前段催化剂和后段催化剂并被配置于内燃机的排气通路中,且被形成为该排气净化催化剂的容量相对于所述内燃机的总排气量的比率为2.0以上且3.0以下,所述加热装置被配置于所述排气通路中的所述前段催化剂与所述后段催化剂之间。并且,所述前段催化剂和所述后段催化剂被分割为所述前段催化剂的容量相对于所述内燃机的总排气量的比率为0.3以上且1.5以下。此处所说的“内燃机的总排气量”是指每个气缸的行程容积与气缸数的积。
根据这样构成的内燃机的排气净化装置,如内燃机被冷起动的情况等那样排气净化催化剂的温度比活性温度低的情况下,若使加热装置工作,则前段催化剂受到排气的热而升温,并且后段催化剂受到来自加热装置的热而升温。在此,从内燃机排出的有害气体成分的量取决于该内燃机的总排气量。因此,排气净化催化剂的容量(前段催化剂和后段催化剂的总容量)通常被确定为该排气净化催化剂的容量相对于内燃机的总排气量的比率为2.0至3.0。关于这样构成的排气净化催化剂,本申请发明人进行了积极的实验及验证,结果得到如下见解:若以前段催化剂的容量相对于内燃机的总排气量的比率为0.3以上且1.5以下的方式将排气净化催化剂分割为前段催化剂和后段催化剂,则能够尽可能缩短这些前段催化剂和后段催化剂升温至活性温度以上为止所需的时间。例如,在内燃机的总排气量为2.0l(2000cc)的情况下,若将前段催化剂的容量设定为0.6l(600cc)以上且3.0l(3000cc)以下,则能够尽可能缩短前段催化剂和后段催化剂升温至活性温度以上为止所需的时间。由此,到后段催化剂的下游侧端部升温至活性温度以上为止所需的时间也变短,因此能够将由加热装置进行的后段催化剂的加热时间抑制为较短。其结果,在后段催化剂的下游侧端部升温至活性温度以上之前,该后段催化剂的上游侧端部变得难以过度升温。因此,根据本发明的内燃机的排气净化装置,能够抑制排气净化催化剂的过度升温,并且能够使该排气净化催化剂整体尽可能迅速地升温至活性温度以上。
在此,本发明的前段催化剂和后段催化剂也可以不是完全相同的催化剂,例如,可以由nox吸留还原型催化剂(nsr(noxstoragereduction)催化剂)形成前段催化剂,并由选择还原型催化剂(scr(selectivecatalyticreduction)催化剂)形成后段催化剂。总之,前段催化剂和后段催化剂只要单位量的热容量相等即可。此外,此处所说的“单位量的热容量相等”并不限定于前段催化剂和后段催化剂的单位量的热容量完全相同的情况,也可以包含些许的差(例如nsr催化剂的单位量的热容量和scr催化剂的单位量的热容量的差的程度)。
另外,后段催化剂也可以具有pm(particulatematter:颗粒物)捕集功能。即,后段催化剂也可以担载于用于捕集排气中的pm的颗粒过滤器。在此,与后段催化剂不具有pm捕集功能的情况相比,后段催化剂的单位量的热容量变大。伴随于此,具有pm捕集功能的后段催化剂的单位量的热容量比不具有pm捕集功能的前段催化剂的单位量的热容量大。因此,为了抑制具有pm捕集功能的后段催化剂中的上游侧端部的过度升温并使排气净化催化剂整体尽可能迅速地升温至活性温度以上,与后段催化剂不具有pm捕集功能的情况相比,需要减小后段催化剂的容量,并且增大前段催化剂的容量。对此,本申请发明人进行了积极的实验及验证,结果发现:通过以所述前段催化剂的容量相对于所述内燃机的总排气量的比率为0.5以上且1.7以下的方式将排气净化催化剂分割为前段催化剂和后段催化剂,从而抑制后段催化剂的上游侧端部的过度升温,并且使排气净化催化剂整体尽可能迅速地升温至活性温度以上。因此,在后段催化剂具有pm捕集功能的情况下(后段催化剂的单位量的热容量比前段催化剂的单位量的热容量大的情况),只要以所述前段催化剂的容量相对于所述内燃机的总排气量的比率为0.5以上且1.7以下的方式将排气净化催化剂分割为前段催化剂和后段催化剂即可。
在此,本发明的加热装置是利用排气所具有的热能以外的能量对向后段催化剂流入的排气进行加热的装置,例如,能够使用利用电能对排气进行加热的电加热式加热器、利用使燃料燃烧时产生的热能对排气进行加热的燃烧式加热器等。
根据本发明,能够抑制排气净化催化剂的热劣化,并且使该排气净化催化剂迅速地升温至活性温度以上。
附图说明
图1是示出第1实施例中的内燃机的排气系统的概略结构的图。
图2是示出排气净化催化剂的比较例的图。
图3是示出第1实施例中的前段催化剂容量比与活性时间的相关性的图。
图4是示出第2实施例中的内燃机的排气系统的概略结构的图。
图5是示出第2实施例中的前段催化剂容量比与活性时间的相关性的图。
附图标记说明
1内燃机
2排气通路
3排气净化催化剂
3’排气净化催化剂
31前段催化剂
32加热装置
33后段催化剂
31’前段催化剂
33’后段催化剂
具体实施方式
以下,基于附图对本发明的具体实施方式进行说明。只要没有特别记载,本实施方式记载的构成部件的尺寸、材质、形状、相对配置等并不意味着将发明的技术范围仅限定于此。
<实施例1>
首先,基于图1至图3对本发明的第1实施例进行说明。图1是示出本发明的内燃机的排气系统的概略结构的图。
图1所示的内燃机1是使用轻油作为燃料的压缩点火式的内燃机(柴油发动机)。在该内燃机1上连接有用于使在该内燃机1的气缸内燃烧的气体流通的排气通路2。在排气通路2的中途配置有排气净化催化剂3。排气净化催化剂3在被分割为前段催化剂31和后段催化剂33的状态下被收容在大致筒状的壳体内。前段催化剂31和后段催化剂33是具备将排气中含有的nox还原的功能的催化剂,例如为nsr催化剂或scr催化剂等。此外,前段催化剂31和后段催化剂33无需为完全相同的催化剂,只要单位量的热容量大致相等,则也可以由不同种类的催化剂形成。例如,也可以用nsr催化剂形成前段催化剂31,并且用scr催化剂形成后段催化剂33。在该情况下,在前段催化剂31与后段催化剂33之间设置用于向后段催化剂33供给作为氨(nh3)或nh3的前体的添加剂的添加阀即可。
另外,排气净化催化剂3具备配置在前段催化剂31与后段催化剂33之间的加热装置32。加热装置32是通过将从未图示的电池供给的电能转换为热能而对向后段催化剂33流入的排气进行加热的电加热式加热器,由ecu(electroniccontrolunit:电子控制单元)4控制。此外,作为加热装置32,也可以使用通过使燃料燃烧而产生热能的燃烧式加热器。
在内燃机1刚冷起动之后,排气净化催化剂3比活性温度低时,ecu4从电池向加热装置32供给电能,由此实现排气净化催化剂3的早期活性化。在此,在图2中示出本实施例的比较例。在图2所示的比较例中,排气净化催化剂301未被分割为两个,且在该排气净化催化剂301的上游配置有加热装置302。图2所示的排气净化催化剂301的容量与图1所示的前段催化剂31和后段催化剂33的总容量相等,根据从内燃机1排出的nox量来确定。此外,从内燃机1排出的nox量取决于内燃机1的总排气量(每个气缸的行程容积与气缸数之积),因此排气净化催化剂301的容量例如被确定为排气净化催化剂301的容量相对于内燃机1的总排气量的比率约为
2.0~3.0。即,在内燃机1的总排气量为2.0l(2000cc)的情况下,排气净化催化剂301的容量在约4.0l(4000cc)~6.0l(6000cc)的范围内确定。根据图2所示的结构,配置在比加热装置302靠下游位置的排气净化催化剂301的容量比本实施例中的后段催化剂33的容量大,因此排气净化催化剂301的下游侧端部升温至活性温度以上所需的时间(即,由加热装置302进行的排气净化催化剂301的加热时间)容易变长。由此,在排气净化催化剂301的下游侧端部升温至活性温度以上之前,该排气净化催化剂3的上游侧端部容易过度升温,由此,该上游侧端部有可能会热劣化。与此相对,如图1所示,本实施例的排气净化催化剂3被分割为前段催化剂31和后段催化剂33,并且在这些前段催化剂31与后段催化剂33之间配置有加热装置32,因此与上述比较例相比,配置于加热装置32的下游的后段催化剂33的容量变小。其结果,能够缩短从加热装置32的工作开始到后段催化剂33的下游侧端部升温至活性温度以上为止的时间。由此,能够抑制后段催化剂33的上游侧端部过度升温,并且使后段催化剂33整体升温至活性温度以上。
另外,如图1所示,若将排气净化催化剂3分割为前段催化剂31和后段催化剂33,并且在这些前段催化剂31与后段催化剂33之间配置加热装置32,则前段催化剂31仅通过排气的热能而升温。在此,如上所述,前段催化剂31和后段催化剂33的总容量根据内燃机1的总排气量确定,因此若减小后段催化剂33的容量,则需要随之增大前段催化剂31的容量。由此,若前段催化剂31的容量过剩地变大,则直至该前段催化剂31整体活化为止需要时间,排气净化催化剂3整体升温至活性温度以上为止所需的时间反而有可能变长。与此相对,本申请发明人进行了积极的实验及验证,结果发现:若以前段催化剂31的容量相对于内燃机1的总排气量的比率成为0.3以上且1.5以下的方式将排气净化催化剂3分割为前段催化剂31和后端催化剂33,则能够使排气净化催化剂3整体尽可能迅速地升温至活性温度以上。
图3是示出以排气净化催化剂3的容量(前段催化剂31与后段催化剂33的总容量)相对于内燃机1的总排气量的比率为2.0~3.0的方式形成排气净化催化剂3的情况下的、前段催化剂31的容量相对于内燃机1的总排气量的比率(前段催化剂容量比)与排气净化催化剂3整体升温至活性温度为止所需的时间(活性时间)的相关性的图。图3中的t0是从能够在由加热装置32进行后段催化剂33的加热时将后段催化剂33中的上游侧端部的温度收敛于适当的温度范围的最大加热时间减去余裕量而得到的时间,是通过基于实验、模拟结果等的适合作业而确定的时间。
如图3所示,若以前段催化剂容量比为0.3以上且1.5以下的方式将排气净化催化剂3分割为前段催化剂31和后段催化剂33,则能够将排气净化催化剂3整体升温至活性温度为止所需的时间抑制在上述最大加热时间t0以下。例如,在内燃机1的总排气量为2.0l(2000cc)的情况下,以前段催化剂31的容量成为0.6l(600cc)~3.0l(3000cc)的方式将排气净化催化剂3分割为前段催化剂31和后段催化剂33即可。此时,若以前段催化剂容量比成为0.8附近的方式将排气净化催化剂3分割为前段催化剂31和后段催化剂33,则能够尽可能缩短排气净化催化剂3整体升温至活性温度的时间。其结果,能够抑制后段催化剂33的上游侧端部由于加热装置32的加热而过度升温的情形,并且能够使排气净化催化剂3整体尽可能迅速地升温至活性温度。
<实施例2>
接着,基于图4至图5对本发明的第2实施例进行说明。在此,对与上述第1实施例不同的结构进行说明,对于相同的结构省略说明。
在上述第1实施例中,对前段催化剂和后段催化剂各自仅具有催化剂功能的情况(即前段催化剂与后段催化剂的单位量的热容量大致相等的情况)进行了叙述,但在本实施例中,对前段催化剂仅具有催化剂功能而后段催化剂具有催化剂功能和pm捕集功能(过滤器功能)的情况进行叙述。
图4是示出本实施例中的内燃机1的排气系统的概略结构的图。在图4中,前段催化剂31’由nsr催化剂构成。另一方面,后段催化剂33’是在颗粒过滤器上担载scr催化剂而构成的。在该情况下,后段催化剂33’的容量需要设定为该后段催化剂33’的颗粒过滤器能够捕集从内燃机1排出的pm的容量(例如,后段催化剂33’的容量相对于内燃机1的总排气量的比率为1.0以上的容量)。这样构成的后段催化剂33’的单位量的热容量比如上述的后段催化剂33那样不具有pm捕集功能的催化剂大。伴随于此,具有pm捕集功能的后段催化剂33’的单位量的热容量比不具有pm捕集功能的前段催化剂31’的单位量的热容量大。因此,为了抑制后段催化剂33’的上游侧端部的过度升温并使排气净化催化剂3整体尽可能迅速地升温至活性温度,与上述第1实施例相比,需要减小后段催化剂33’的容量,并且增大前段催化剂31’的容量。因此,在本实施例中,如图5所示,以前段催化剂31的前段催化剂容量比收敛在0.5以上且1.7以下的范围内的方式确定前段催化剂31和后段催化剂33的容量。例如,在内燃机1的总排气量为2.0l(2000cc)的情况下,以前段催化剂31的容量为1.0l(1000cc)~3.4l(3400cc)的方式确定前段催化剂31’和后段催化剂33’的容量即可。此时,若以前段催化剂31的前段催化剂容量比成为1.0附近的方式确定前段催化剂31和后段催化剂33的容量,则能够尽可能缩短排气净化催化剂3’整体升温至活性温度的时间。此外,图5中的t0’是能够从在由加热装置32进行后段催化剂33’的加热时将后段催化剂33’中的上游侧端部的温度收敛在适当的温度范围的最大加热时间减去余裕量而得到的时间。
因此,在后段催化剂33’具备催化剂功能和pm捕集功能的情况下(后段催化剂33’的单位量的热容量比前段催化剂31’的单位量的热容量大的情况),若以前段催化剂容量比成为如图5所示那样的0.5以上且1.7以下的方式确定前段催化剂31和后段催化剂33的容量,则能够抑制后段催化剂33’的上游侧端部由于加热装置32的加热而过度升温的情形,并且能够使排气净化催化剂3整体尽可能迅速地升温至活性温度。
<其他>
此外,若考虑上述图3及图5中示出的相关性,则无论后段催化剂是否具有pm捕集功能,只要以前段催化剂的前段催化剂容量比成为0.5以上且1.5以下的方式确定前段催化剂和后段催化剂的容量,就能够抑制后段催化剂中的上游侧端部的过度升温并使排气净化催化剂整体尽可能迅速地升温至活性温度。