具有带有加热给料器的车载氨反应器的汽车排气后处理系统的制作方法

文档序号:20759215发布日期:2020-05-15 17:50阅读:127来源:国知局
具有带有加热给料器的车载氨反应器的汽车排气后处理系统的制作方法



背景技术:

本公开涉及用于汽车应用的排气后处理系统,并且具体涉及结合车载氨生成以支持直接喷射到废气流中。



技术实现要素:

在本文中描述了包括车载氨反应器的汽车排气后处理系统。该后处理系统构造成使试剂柴油机排放流体(agentdieselemissionfluid)和由氨反应器所提供的水性氨基甲酸铵溶液作为还原剂与移动通过系统的废气混合。这些还原剂与废气的混合设计成导致化学反应并使废气中的氮氧化物(nox)还原。

在示例性实施方式中,该系统还包括与给料器集成的混合加热系统,该给料器构造成将受控量的水性氨基甲酸铵溶液排放到移动通过后处理系统的排气流中。具体来说,混合加热系统包括由废气携带的发动机热量所驱动的被动热交换器以及由电力驱动的主动加热元件。值得注意的是,所公开的被动热交换器从系统中所包括的催化剂的下游回收热量,从而使得在还原剂与废气中的nox之间发生所需化学反应之前不会降低废气温度。控制器选择性调节被动热交换器和主动热交换器的操作,以优化混合加热系统的操作,并避免排放低于预选阈值温度的水性氨基甲酸铵溶液。

本公开的其它特征在考虑示例性实施方式时将变得对本领域人员显而易见,所述示例性实施方式列举了如目前所知的实施本公开的最佳模式。

附图说明

详细说明具体参考附图,其中:

图1是具有汽车排气后处理系统的柴油发动机半挂卡车(semi-truck)的透视图,该汽车排气后处理系统包括催化nox还原单元、氨生成和转化单元以及构造成管理汽车排气后处理系统内温度的混合加热系统。

图2是汽车排气后处理系统的示意图,其显示了氨生成和转化单元包括氨基甲酸铵反应器和氨基甲酸铵储存器,并且显示了包括如下部件的混合加热系统:主动和被动加热元件、构造成选择性调节来自混合加热系统的热量以控制汽车排气后处理系统内温度的加热系统控制器、以及构造成测量排气后处理系统内的温度和储罐液位的传感器;

图3是图2的汽车排气后处理系统中所包括的给料系统的详细示意图,显示了给料器主动加热元件和给料器被动加热元件与给料系统连接;

图4是图2的氨基甲酸铵反应器的详细示意图,显示了混合加热系统的反应器主动加热元件和反应器被动热交换器都与氨基甲酸铵反应器连接,并且显示出反应器被动热交换器构造成从经过排气后处理系统的废气回收热量;

图5是图2的氨基甲酸铵储存器的详细示意图,显示了混合加热系统的储存器主动加热元件和储存器被动热交换器都与氨基甲酸铵储存器连接,并且显示出储存器被动热交换器构造成从经过排气后处理系统的废气回收热量。

发明详述

为了促进理解本公开的原理,下面将参考附图所示的多个实施方式以及用来描述附图的具体文字。

示例性的柴油发动机半挂卡车显示于图1中,其具有包括催化nox还原单元12、氨生成和转化单元14和混合加热系统16的汽车排气后处理系统10。催化nox还原单元12构造成使柴油机排放流体或水性氨基甲酸铵溶液与发动机排气一起喷射,以将发动机排气(特别是氮氧化物)转化为可以释放到周围的空气中的氮和水蒸气或二氧化碳。氨生成和转化单元14构造成将柴油机排出流体转化成水性氨基甲酸铵溶液。在催化nox还原单元12之前将来自氨生成和转化单元14的水性氨基甲酸铵溶液喷射到排气流中,以在低温下(如发动机启动期间)还原氮氧化物。

催化nox还原单元12包括给料器系统22,如图2和图3所示。给料系统22与汽车排气后处理系统10的外壳连接,并且构造成将水性氨基甲酸铵溶液或柴油机排放流体(def)排放到发动机排气流中,如图2所示。在示例性实施方式中,将混合加热系统16整合到给料系统22,并且管理给料系统22中的温度。

给料系统22包括第一给料器78、nox传感器90以及给料控制器92,如图2和图3所示。第一给料器78构造成将受控量的水性氨基甲酸铵溶液排放到移动通过废气后处理系统10的排气流中。nox传感器90构造成检测进入排气后处理系统10的排气流中所携带的nox量。给料控制器92构成至少部分基于检测到的nox量,以预定反应流速将水性氨基甲酸铵溶液注入排气流。将给料控制器92进一步构造成当氨生成和转化单元14中所包括的氨基甲酸铵储存器18中的水性氨基甲酸铵溶液的量大于预定量时,以大于预定反应流速的释放流速(reliefflowrate)将水性氨基甲酸铵溶液注入排气流。

在示例性实施方式中,给料系统还包括第二给料器80,如图2和图3所示。第二给料器80构造成将受控量的柴油机排放流体排放到移动通过废气后处理系统10的排气流中。在一些实施方式中,给料系统22可以仅包括一个给料器,该给料器构造成选择性排放受控量的水性氨基甲酸铵溶液或柴油机排放流体。如果在系统10中仅包括一个给料器,则可能需要实施清洁系统以确保在给料器排出其它流体之前,给料器中不存在之前流体的残留物。在一些实施方式中,第一和第二给料器78、80可以集成为单个单元。

氨生成和转化单元14包括氨基甲酸铵反应器18和氨基甲酸铵储存器20。氨基甲酸铵反应器18与催化nox还原单元12中所包括的柴油机排放流体储存器24连接,并且构造成由柴油机排放流体产生水性氨基甲酸铵溶液。氨基甲酸铵储存器20与氨基甲酸铵反应器18连接,并且用于储存从氨基甲酸铵反应器18产生的水性氨基甲酸铵溶液。设想在反应器18内可以产生其它水性含氨溶液,并用于单元14。这些其它水性氨溶液可以源自供应至单元14的其它主要流体/固体。

混合加热系统16可以进一步构造成管理汽车排气后处理系统10其它部件内的温度,如图2至图5所示。具体来说,混合加热系统16可以构造成管理氨生成和转化单元14中所包括的氨基甲酸铵反应器18和氨基甲酸铵储存器20中的温度。

混合加热系统16包括被动和主动加热元件、加热系统控制器26和多个传感器28,如图2至图5所示。将加热系统控制器26构造成使主动加热元件选择性施加热量以管理系统10内的温度。将加热系统控制器26也构造成选择性调整来自被动加热元件的热量以控制系统10内的温度。将加热系统控制器24构造成基于多个传感器28所测量的信息(例如,温度和储罐液位)使主动加热元件选择性施加热量并且选择性调整来自被动加热元件的热量。

在示例性实施方式中,多个传感器28包括反应器温度传感器30、储存器温度传感器31、反应器液位传感器32、和储存器液位传感器64,如图2和图3所示。反应器温度传感器58与氨基甲酸铵反应器18连接,并且构造成测量氨基甲酸铵反应器18中内容物的温度。反应器液位传感器32与氨基甲酸铵反应器18连接,并且构造成测量反应器18中流体的量。此外,储存器温度传感器31和储存器液位传感器33与氨基甲酸铵储存器20连接。储存器温度传感器31测量储存在储存器20中的内容物的温度。储存器液位传感器33测定了储存在储存器20中的水性氨基甲酸铵溶液的液位。多个传感器28与温度系统控制器26连通。

混合加热系统16包括给料器被动热交换器54和给料器主动加热元件56,如图3所示。给料器被动热交换器54构造成从通过排气后处理系统10的废气回收热量并加热通过给料器78的通路。给料器主动加热元件56构造成从供应至加热系统16的电能产生热量并加热通过给料系统22的通路。将加热系统控制器26构造成使给料器主动加热元件56选择性地施加热量以管理在通过给料系统22的通路中移动的水性氨基甲酸铵溶液的温度。还将加热系统控制器26构造成选择性调整来自给料器被动加热元件54的热量,以管理在通过给料系统22的通路中移动的水性氨基甲酸铵溶液的温度。另外,将加热系统控制器26构造成使给料器主动加热元件6选择性地施加热量并且选择性调整来自给料器被动热交换器54的热量,以设法使从给料器排放出的水性氨基甲酸铵溶液的温度为60℃或高于60℃。在一个实施方式中,将加热系统控制器26构造成使给料器主动加热元件6选择性地施加热量并且选择性调整来自给料器被动热交换器54的热量,以设法使从给料器排放出的溶液的温度为60℃至约200℃。

给料器被动热交换器54包括给料器被动热交换器通道58和给料器被动热交换器阀60,如图3所示。给料器被动热交换器通道58构造成从进入给料器被动热交换器54的排气回收热量。阀60设置在给料器被动热交换器通道58的入口处,并且构造成通过在允许排气流进入给料器被动热交换器通道58的打开位置和防止排气流进入给料器被动热交换器通道58的关闭位置之间进行改变,来调整进入给料器被动热交换器54的排气流。阀60构造成与加热系统控制器26连通,该加热系统控制器26使得阀60在打开位置和关闭位置之间改变。

混合加热系统16还可以包括反应器被动热交换器34和反应器主动加热元件36,如图4所示。反应器被动热交换器34构造成从通过排气后处理系统10的废气回收热量并加热氨基甲酸铵反应器18的内容物。反应器主动加热元件36构造成从供应至加热系统16的电能来产生热量并加热氨基甲酸铵反应器18的内容物。加热系统控制器26与主动加热元件和被动加热元件34、36电连接。还将加热系统控制器26构造成使反应器主动加热元件36选择性施加热量以管理氨基甲酸铵反应器18内的温度。还将加热系统控制器26构造成选择性调整来自反应器被动热交换器34的热量,以控制氨基甲酸铵反应器18内的温度。

反应器被动热交换器包括反应器被动热交换器通道38、反应器旁路导管40以及反应器被动热交换器阀42,如图4所示。反应器被动热交换器通道38构造成从进入反应器被动热交换器34的排气回收热量。反应器旁路导管40构造成允许进入反应器被动热交换器34的排气绕过反应器被动热交换器通道38。阀42构造成在反应器被动热交换器通道38和旁路导管40之间延伸并使之互连,并且调整进入反应器被动热交换器通道38和旁路导管40之间的被动热交换器34的排气流。阀42通过在将排气流引导向反应器被动热交换器通道38的打开位置和将排气流引导向反应器旁路导管40并且绕过通道38的关闭位置之间进行改变来调整进入反应器被动热交换器的排气流。阀42构造成与加热系统控制器26连通,该加热系统控制器26使得阀42在打开位置和关闭位置之间改变。

混合加热系统16还包括储存器被动热交换器44和储存器主动加热元件46,如图5所示。储存器被动热交换器44构造成从通过排气后处理系统10的废气回收热量并加热氨基甲酸铵储存器20的内容物。储存器主动加热元件46构造成从供应至加热系统16的电能来产生热量并加热氨基甲酸铵储存器20的内容物。将加热系统控制器26构造成使储存器主动加热元件46选择性施加热量以管理氨基甲酸铵储存器20内的温度,以维持所储存的水性氨基甲酸铵溶液的平衡。还将加热系统控制器26构造成选择性调整来自储存器被动热交换器44的热量,以控制氨基甲酸铵储存器20内的温度,以维持所储存的水性氨基甲酸铵溶液的平衡。

储存器被动热交换器44包括储存器被动热交换器通道48和储存器被动热交换器阀50,如图5所示。储存器被动热交换器通道48构造成从进入储存器被动热交换器44的排气回收热量。阀50设置在储存器被动热交换器通道48的入口处,并且构造成通过在允许排气流进入储存器被动热交换器通道48的打开位置和防止排气流进入储存器被动热交换器通道48的关闭位置之间进行改变来调整进入储存器被动热交换器44的排气流。阀50构造成与加热系统控制器26连通,该加热系统控制器26使得阀50在打开位置和关闭位置之间改变。

将加热系统控制器26构造成基于多个因素,使主动加热元件36、46、56选择性施加热量,并且选择性调整来自被动热交换器34、44、54的热量。例如,基于与氨基甲酸铵储存器20中储罐液位相关的信息,加热系统控制器26使反应器主动加热元件36选择性施加热量,该相关信息接收自与加热系统控制器26连通的传感器28。当氨基甲酸铵储存器20的内容物不足并且反应器被动热交换器34未产生足够的热量以产生更多的水性氨基甲酸铵溶液时,加热系统控制器26使反应器主动加热元件36施加热量。

加热系统控制器26还可以基于与反应器18内温度相关的信息使反应器主动加热元件36选择性施加热量。当被动加热元件34不能提供足够热量以使得反应器18的内容物反应产生水性氨基甲酸铵溶液时,加热系统控制器26使加热元件36施加热量。

在其它实施方式中,基于与氨基甲酸铵储存器20内温度相关的信息,加热系统控制器26使储存器主动加热元件46选择性施加热量。当储存器20的温度变得低于所需温度,加热系统控制器26使储存器主动加热元件46施加热量,以维持储存在储存器20中的水性氨基甲酸铵溶液的平衡。如果储存器被动热交换器44并未供应足够的热量以将储存器20维持在所需温度,则水性氨基甲酸铵溶液可能形成沉淀物或固体。在温度低得足以将形成沉淀物或固体的情况下,加热系统控制器26使储存器主动加热元件46施加热量。

在另一实施方式中,加热系统控制器26使给料器主动加热元件56施加热量以维持给料系统22中的所需温度。如果不能在给料系统22中维持所需温度,那么在给料系统22中可能形成沉淀物或固体,导致堵塞。

加热系统控制器26还选择性调整来自反应器被动热交换器34的热量,以控制氨基甲酸铵反应器18内的温度。当反应器18内的温度升高至高于所需温度时,加热系统控制器26调整来自反应器被动热交换器34的热量。加热系统控制器26将阀42从打开位置改变为关闭位置,以允许排气进入旁路导管40并绕过使得反应器18内容物冷却的通道38。

加热系统控制器26还选择性调整来自储存器被动热交换器44的热量,以控制氨基甲酸铵储存器20内的温度。当储存器内的温度升高至高于所需温度时,加热系统控制器26调整来自储存器被动热交换器44的热量。加热系统控制器26将阀50从打开位置改变为关闭位置,以阻止排气进入储存器被动热交换器通道48。在阻止排气进入储存器被动热交换器通道48的情况下,储存器20的内容物冷却至所需温度。最后,当给料系统内的温度升高至高于所需温度时,加热系统控制器26还调整来自给料器被动热交换器54的热量。加热系统控制器26将阀60从打开位置改变为关闭位置,以阻止排气进入给料器被动热交换器通道58。在阻止排气进入给料器被动热交换器通道58的情况下,储存器20的内容物冷却至所需温度。

在示例性实施方式中,混合加热系统16还包括电池64,如图2所示。电池64与反应器主动加热元件36连接,并且为反应器主动加热元件36提供电源。电池64还可以与储存器主动加热元件46和给料器主动加热元件56连接,并且为储存器主动加热元件46和给料器主动加热元件56提供电源。在一些实施方式中,混合加热系统16反而包括为主动加热元件36、46、56提供电源的太阳能电池板或风力涡轮机中的至少一个。

在示例性实施方式中,自动排气后处理系统10还包括催化剂66。催化剂66安装在系统10中。反应器被动热交换器34从催化剂66下游的废气回收热量,从而使得在与催化剂66相互作用前,不会降低废气温度。

再次转到图2中所示的催化nox还原单元12,催化nox还原单元12还包括混合器68、选择性催化还原系统70和氨逸出催化剂系统72,如图2所示。将混合器68安装在系统10内,并且构造成使发动机排气与由给料系统22所注入的流体混合。将选择性催化还原系统70构造成借助催化剂66将包含氮氧化物的排气-柴油排放流体混合物选择性地转化为氮和水蒸气或二氧化碳。当柴油机排放流体与排气混合时,反应产物为氮气和水蒸气,而当氨与排气混合时,反应产物为二氧化碳。将氨逸出催化剂系统72构造成进一步转化离开选择性催化还原系统70的任何部分氧化的氮氧化物。

如图2所示的催化nox还原单元12还包括如图2所示的柴油机排放流体储存器24和柴油机给料泵76。柴油机排放流体储存器24与氨基甲酸铵反应器18和给料系统22连通。柴油机给料泵76与柴油机排放流体储存器24连接,并且构造成将柴油机排放流体泵送至给料系统22。

在示例性实施方式中,氨生成和转化单元14中包含的氨基甲酸铵反应器18还包括止回阀82和调压阀84,如图2和图4所示。止回阀与氨基甲酸铵储存器20连通,并且构造成允许由反应器18产生的水性氨基甲酸铵溶液离开反应器18,但是防止任何流体重新进入反应器18。调压阀84与柴油机排放流体储存器24连通,并且构造成如果氨基甲酸铵溶液反应器18内压力超过所需压力,则允许从反应器18取出柴油机排放流体。

氨生成和转化单元14还包括铵给料泵86和柴油反应器泵(adiesel-rectorpump)88,如图2所示。铵给料泵86与氨基甲酸铵储存器20连接,并且构造成将水性氨基甲酸铵溶液泵送到第二给料器80。柴油反应器泵88与柴油机排放流体储存器24连接,并且构造成将柴油机排放流体泵送至给氨基甲酸铵反应器18。在一些实施方式中,在系统10中可以仅包括一个泵,并且该泵与氨基甲酸铵反应器18、氨基甲酸铵储存器20、柴油机排放流体储存器24以及给料系统22连通,并且将所需内容物泵送至所需位置。

本公开介绍了一种通过将氨基甲酸铵溶液添加到进入排气后处理系统的发动机排气中来减少低温(例如,发动机启动,或在低于180℃的温度下低负载发动机占空比)下nox排放的方法。然而,氨基甲酸铵溶液可能会在低于20℃的温度下沉淀,并对排气后处理系统产生不良影响。在一些实施方式中,可将给料器添加至排气后处理系统,以将氨基甲酸铵溶液注入或给料至发动机排气流中。给料器可以通过加热系统进行加热,以确保氨基甲酸铵溶液的温度保持高于20℃,防止沉淀物形成。

在一些实施方式中,排气后处理系统包括柴油机排放流体储罐、氨基甲酸铵反应器、泵、阀、控制器和氨基甲酸铵储罐。排气后处理系统可用于满足加州空气资源委员会(californiaairresourcesboard)针对2023年提出的0.002ghp-hr的超低nox排放要求。除了市售车辆应用之外,排气后处理系统10可以在乘用车或高马力性能汽车市场中实施。尽管示例性实施方式显示了包括多个泵的系统,但是系统中可以包括更少或者甚至单个泵来驱动流体流动而不背离预期设计。

本公开介绍了对氨基甲酸铵还原剂流体使用加热给料。氨基甲酸铵在表面温度低于150℃时能很好地用作nox还原剂。经加热的给料器或注射器可以进行电加热或用排气进行加热。经加热的给料器可使氨基甲酸铵液滴进一步减小,并可以有助于在排气后处理系统的混合器中混合排气和氨基甲酸铵溶液。由经加热的给料器注入的水性氨基甲酸铵溶液的量取决于要在排气中待还原的nox的量。水性氨基甲酸铵溶液的添加量可以由nox传感器和控制器进行调节。整个排气后处理系统将使排气达到加州空气资源委员会的标准以及欧洲和中国未来的标准。

以下编号的条款包括包括预期的非限制性实施方式:

条款1:一种用于将还原剂给料至排气流的废气后处理系统,所述系统包括:

柴油机排放流体储存器,

反应器,用于由柴油机排放流体储存器中的柴油机排放流体产生氨溶液,

给料器,其构造成将受控量的氨溶液排放到移动通过废气后处理系统的排气流中,以及

加热系统,其构造成管理氨基甲酸铵反应器中的温度,该加热系统包括:给料器被动热交换器、给料器主动加热元件以及加热系统控制器,所述给料器被动热交换器构造成从通过排气后处理系统的废气回收热量并加热通过给料器的通路,所述给料器主动加热元件构造成由供应至加热系统的电能来产生热量并加热通过给料器单元的通路,所述加热系统控制器构造成使得给料器主动加热元件选择性地施加热量以管理在通过给料器的通路中移动的氨溶液的温度。

条款2:如任意其它合适条款或条款组合所述的系统,其中,加热系统控制器构造成选择性调整来自给料器被动热交换器的热量,以管理在通过给料器的通路中移动的氨溶液的温度。

条款3:如任意其它合适条款或条款组合所述的系统,其中,加热系统控制器构造成使给料器主动加热元件选择性地施加热量并且选择性调整来自给料器被动热交换器的热量,以设法使从给料器排放出的氨溶液的温度为高于60℃。

条款4:如任意其它合适条款或条款组合所述的系统,其中,加热系统控制器构造成使给料器主动加热元件择性地施加热量并且选择性调整来自给料器被动热交换器的热量,以设法使从给料器排放出的氨溶液的温度为约60℃至约200℃。

条款5:如任意其它合适条款或条款组合所述的系统,所述系统还包括安装在系统中的催化剂。给料器被动热交换器构造成从催化剂下游的废气回收热量,从而使得在与催化剂相互作用前,不会降低废气温度。

条款6:如任意其它合适条款或条款组合所述的系统,其中,混合加热系统包括反应器被动热交换器、反应器主动加热元件以及加热系统控制器,所述反应器被动热交换器构造成从通过排气后处理系统的废气回收热量并加热氨基甲酸铵反应器的内容物,所述反应器主动加热元件构造成从供应至加热系统的电能来产生热量并加热氨基甲酸铵反应器的内容物,所述加热系统控制器构造成使得反应器主动加热元件择性地施加热量以管理氨基甲酸铵反应器的温度。

条款7:如任意其它合适条款或条款组合所述的系统,其中,反应器被动热交换器从催化剂下游的废气回收热量,从而使得在与催化剂相互作用前,不会降低废气温度。

条款8:如任意其它合适条款或条款组合所述的系统,其中,所述系统还包括nox传感器和给料控制器,所述nox传感器构造成检测进入排气后处理系统的排气流中所携带的nox量,所述给料控制器构造成至少部分基于所检测到的nox量,以预定反应流速将氨溶液注入排气流中。

条款9:如任意其它合适条款或条款组合所述的系统,所述系统还包括氨基甲酸铵储存器和储存器液位传感器,所述氨基甲酸铵储存器构造成储存由氨基甲酸铵反应器产生的水性氨基甲酸铵溶液,所述储存器液位传感器构造成检测氨基甲酸铵储存器中水性氨基甲酸铵溶液的量。所述给料控制器构造成当氨基甲酸铵储存器中的水性氨基甲酸铵溶液的量大于预定量时,以大于预定反应流速的释放流速将水性氨基甲酸铵溶液注入排气流。

条款10:如任意其它合适条款或条款组合所述的系统,其中,混合加热系统包括储存器主动加热元件,其构造成由供应至加热系统的电能来产生热量并加热氨基甲酸铵储存器的内容物,并且/或者,其中加热系统控制器构造成使得反应器主动加热元件择性地施加热量以管理氨基甲酸铵储存器中的温度,使所储存的水性氨基甲酸铵溶液保持平衡。

条款11:如任意其它合适条款或条款组合所述的系统,其中,所述混合加热系统包括储存器被动热交换器,其构造成从通过排气后处理系统的废气回收热量并加热氨基甲酸铵储存器的内容物,并且/或者,其中加热系统控制器构造成选择性地调整来自储存器被动热交换器的热量,以控制氨基甲酸铵储存器中的温度,使所储存的水性氨基甲酸铵溶液保持平衡。

条款12.一种交通工具,所述交通工具包含:

内燃机(combustionengine),其构造成产生废气;以及

构造成对废气进行处理的排气后处理系统,所述排气后处理系统包括:

柴油机排放流体储存器;

反应器,用于由柴油机排放流体储存器中的柴油机排放流体产生氨溶液,

给料器,其构造成将受控量的氨溶液排放到移动通过废气后处理系统的排气流中,以及

加热系统,其构造成管理给料器中的温度,该加热系统包括:给料器被动热交换器、给料器主动加热元件以及加热系统控制器,所述给料器被动热交换器构造成从通过排气后处理系统的废气回收热量并加热通过给料器的通路,所述给料器主动加热元件构造成由供应至加热系统的电能来产生热量并加热通过给料器单元的通路,所述加热系统控制器构造成使得给料器主动加热元件选择性地施加热量以管理在通过给料器的通路中移动的氨溶液的温度。

虽然已经在附图和前面的描述中详细图示和描述了本公开,但是认为其是说明性的而非限制性的,应当理解,仅显示和描述了某些示例性实施方式,并且期望保护在本公开精神内的所有变化和改变。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1