紧凑式柴油机污染物排放逆流催化转化协同处理装置的制作方法

文档序号:23214984发布日期:2020-12-08 13:57阅读:111来源:国知局
紧凑式柴油机污染物排放逆流催化转化协同处理装置的制作方法

本实用新型涉及柴油机尾气后处理技术领域,尤其涉及一种紧凑式柴油机污染物排放逆流催化转化协同处理装置。



背景技术:

柴油机具有功率覆盖范围广、燃油消耗率低和耐久性好等优点,在交通运输、工程机械、农业机械和发电等领域应用广泛。由于柴油机采用富氧扩散燃烧方式,碳氢化合物(hc,hydrocarbons)和co排放较低,但是排气中颗粒物(pm,particulatematter)和氮氧化物nox较多。柴油机直接排放到空气中的pm和nox不仅对人体健康有严重危害,也是导致大气能见度下降、酸沉降、全球气候变化和光化学烟雾等环境污染的主要因素之一。由于机内净化技术无法实现同时降低pm和nox排放效果,机外后处理技术是控制pm和nox排放最有效的手段。但是柴油机尾气排放温度远低于汽油机,而且工作在富氧排气条件下,三效催化器无法实现pm和nox排放控制。长期以来,柴油机pm和nox排放后处理技术是柴油机污染物排放控制研究的重点和难点。

柴油机颗粒捕集器(dpf,dieselparticulatefilter)是降低pm排放的最有效柴油机后处理技术。dpf是一种物理性过滤体,过滤捕集的pm沉积在dpf内,会造成柴油机排气背压增大,导致柴油机动力性和经济性恶化。因此,为了避免dpf影响柴油机性能,实现dpf持续工作,必须及时清除dpf中捕集过程中积聚的pm,清除dpf中积聚pm过程称为dpf再生。dpf再生技术成熟程度是决定其在柴油机pm控制中推广应用的关键。英国johnsonmatthey公司开发研制的连续再生阱(continuousregenerationtrap,crt)技术,是一项较为成熟的dpf颗粒物捕集和再生技术。crt系统将氧化催化器(doc,dieseloxidationcatalyst)置于催化dpf(cdpf)前,排气中co、hc和可溶性有机馏分(sof,solubleorganicfraction)在doc中被净化的同时,no被氧化成no2。在随后的cdpf中,no2作为氧化剂与捕集的pm进行氧化反应,实现cdpf低温再生过程。目前,crt技术已经在车用柴油机上推广应用。柴油机nox排放控制技术主要包括选择性催化还原技术(scr,selectivecatalyticreduction)和稀燃nox捕集技术(lnt,leannoxtrap),lnt技术也称作nox存储还原技术(noxstorageandreduction,nsr)。其中scr和lnt技术已经在中国、美国、欧洲和日本得到广泛应用。

目前,柴油机要达到同时控制pm和nox排放的目的,必须采用doc、scr、lnt和cdpf几种催化转化器组合,构成不同结构的组合后处理系统。组合后处理系统每种催化转化器独自工作,也必须彼此关联,使得后处理系统结构复杂、设备庞大和运行成本高。日本丰田汽车公司经过对柴油机pm和nox排放控制技术长期不断的研究,对相应催化转化技术认识的逐渐加深,提出pm和nox协同催化处理(dpnr,dieselparticulate-noxreduction)技术概念。dpnr技术是在dpf的过滤体表面涂覆碱金属催化剂涂层,并在涂层上分散沉积贵金属铂pt。当柴油机工作在稀燃(富氧)状态时,在pt催化作用下,尾气中no被氧化成no2,所含氧气o2吸附在pt活性位上,no2会进一步转化为硝酸盐存储在碱金属催化剂表面上。同时,沉积在催化剂表面的pm被nox存储过程释放出的活性氧和过量的氧气氧化。当柴油机运转在富燃(贫氧)状态时,存储在碱金属催化剂表面上的硝酸盐分解并释放出no和活性氧,沉积在催化剂表面的pm被活性氧氧化,no被尾气中co和hcs还原为氮气n2。dpnr技术将pm和nox在同一催化转化器上协同处理,并实现dpf再生,是一项理想的柴油机排放后处理技术。

dpnr技术在一个系统内合并了dpf和lnt功能,是目前被普遍看好的一项柴油机尾气后处理技术。但在对dpnr技术开发研制过程中,存在与dpf和lnt类似的技术难题,(1)柴油机尾气排放温度低,为了改善dpnr系统性能,采用排烟管喷射燃油升温技术方案,会严重影响柴油机燃油经济性。另外,催化反应床温度很难维持在实现nox存储和硝酸盐分解与黑碳氧化温度重叠窗口内,使得dpnr系统转化效率低,不能达到pm和nox排放控制要求。(2)nox吸附材料吸附so2形成硫酸盐后,在正常运行条件下很难分解,直接影响到催化剂nox的存储能力。如果采用常规高温脱硫方式,不仅消耗更多燃料,而且会引起贵金属催化剂热烧结,导致催化剂热失活。(3)燃烧产生的无机灰分、pm再生产生的灰烬和排气管脱落的金属颗粒,被收集在过滤体内,普通的再生不能将它们清除,而且随着系统使用时间的延长而增加。如果过滤体积灰严重,会导致流通dpnr系统压力降增大,同样会影响柴油机的运行性能。

由此可见,额外燃料输入对柴油机燃油经济性的负面影响、装置内合理温度分布控制、硫污染中毒失活和灰尘沉积阻塞等尚未解决的关键技术问题,限制了dpnr技术在柴油机后处理装置中的推广应用。



技术实现要素:

根据上述提出的技术问题,而提供一种紧凑式柴油机污染物排放逆流催化转化协同处理装置。本实用新型采用的技术手段如下:

一种紧凑式柴油机污染物排放逆流催化转化协同处理装置,包括:装置主体壳体和设置于装置主体壳体中的内体,所述装置主体壳体包括壳体顶部、尾气处理部和壳体底部,所述壳体底部两侧分别设置气流进口和气流出口,所述内体设置在尾气处理部,所述尾气处理部内部设有纵向设置的隔板,将内体分为左、右部分,从而使得气流进口与气流出口之间形成u型通道,所述内体包括多孔陶瓷、硫捕集器和所述壁流式过滤体,所述壁流式过滤体用于在贫、富氧含量尾气间歇地交替条件下,对尾气及其中的颗粒物进行化学反应;所述硫捕集器用于抑制壁流式过滤体催化剂硫污染中毒失活;所述多孔陶瓷用于保留硫捕集器和壁流式过滤体的反应温度,所述壳体底部内部设有换向圆盘,其用于在执行器的控制下,将气流进口进入的进气调节为左内体至右内体的正向气流或是右内体至左内体的反向气流。

进一步地,所述换向器包括换向器本体,所述换向器本体为圆盘状,其表面包括4个均等的分区,其中两分区为空心通孔,二者以圆盘中心为原点中心对称设置。

进一步地,左多孔陶瓷与右多孔陶瓷、左硫捕集器与右硫捕集器、左壁流式过滤体与右壁流式过滤体均通过所述隔板对称设置,对称设置的相应部件规格相同,所述换向圆盘处于正向气流位时,气流方向为气流进口-左多孔陶瓷-左硫捕集器-左壁流式过滤体-壳体顶部-右壁流式过滤体-右硫捕集器-右多孔陶瓷-气流出口;所述换向圆盘处于反向气流位时,气流方向为气流进口-右多孔陶瓷-右硫捕集器-右壁流式过滤体-壳体顶部-左壁流式过滤体-左硫捕集器-左多孔陶瓷-气流出口。

进一步地,所述换向圆盘处于非正向气流位且非反向气流位时,装置内形成不流经内体的旁通流动,即气流方向为气流进口-气流出口。

进一步地,所述多孔陶瓷具有平行通道;所述硫捕集器具有平行通道;所述壁流式过滤体具有平行通道,其相邻通道两端交替开口和封闭,相邻通道间壁为多孔基体,过滤体入口端敞开而末端封闭,标注为通道a;而另一个通道入口端封闭而出口端敞开,标注为通道b;

所述正向流动过程中,尾气流通左多孔陶瓷和左硫捕集器,流入左壁流式过滤体通道a,穿过池壁流入相邻通道b,尾气中颗粒物被捕集在通道a壁面,其化学反应后的残余物沉积在通道a的壁面上;

所述反向流动过程中,尾气流通右多孔陶瓷和右硫捕集器,流入右壁流式过滤体通道b,穿过池壁流入相邻通道a,尾气中颗粒物被捕集在通道b壁面,其化学反应后的残余物沉积在通道b的壁面上。

进一步地,所述多孔陶瓷由碳化硅压制成型;所述硫捕集器由碳化硅压制成型,在通道壁面上涂敷催化剂载体和催化剂;所述壁流式过滤体由碳化硅颗粒材料压制成型,在通道壁面上涂敷催化剂载体和催化剂。

进一步地,所述壳体顶部设有柴油蒸汽喷射器。

本实用新型结构紧凑,通过换向器的换向作用将气流进口至气流出口之间的气流分成正向流动,反向流动和旁通流动模式。本实用新型将dpnr技术、逆流催化氧化技术和快速再生硫捕集技术集合到一起,可以有效抑制dpnr催化剂硫污染中毒失活,在输入极少量额外燃料条件下,将柴油机co、hc、pm和nox多种污染物协同处理,并实现硫捕集器再生、过滤体再生和反向吹除沉积灰尘。本实用新型不仅拟补了dpnr技术不足,而且真正实现柴油机多种污染物排放一体化处理功能,使得柴油机后处理装置具有结构紧凑、高效、抗硫、热稳定性好和运行成本低等优点。

基于上述理由本实用新型可在柴油机尾气后处理技术领域广泛推广。

附图说明

为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为本实用新型具体结构示意图。

图2为本实用新型换向圆盘处于正向气流位时的位置图。

图3为本实用新型换向圆盘处于反向气流位时的位置图。

图4为本实用新型换向圆盘处于旁通流动位时的位置图。

图5为本实用新型正向流动和反向流动时的内部气流状态图,其中,(a)为正向流动,(b)为反向流动。

图6为本实用新型左、右半部分内体结构内流动状态示意图。

图7为图6中左、右半部分内体温度分布示意图。

图8为左半部分内体,正向流动气流和反向流动气流条件下颗粒物壁面附着与灰烬清除状态示意图,图中,(a)为正向流动气流状态,(b)为反向流动气流状态。

图9为so2捕捉和释放示意图,图中(a)为富氧条件下,(b)为贫氧条件下。

图10为pm和nox协同处理化学反应示意图。

图中:1、气流进口;2、气流出口;3、换向圆盘;4、执行器;5、隔板;6、壁流式过滤体;61、左壁流式过滤体;62、右壁流式过滤体;7、硫捕集器;71、左硫捕集器;72、右硫捕集器;8、多孔陶瓷;71、左多孔陶瓷;72、右多孔陶瓷;9、壳体顶部;10、柴油蒸汽喷射器;11、左内体通道;12、右内体通道。

具体实施方式

为使本实用新型实施例的目的、技术方案和优点更加清楚,下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。

如图1所示,本发明实施例公开了一种紧凑式柴油机污染物排放逆流催化转化协同处理装置,包括:装置主体壳体、设置于装置主体壳体中的内体、柴油蒸气喷射系统和测量与控制系统,所述装置主体壳体包括壳体顶部、尾气处理部和壳体底部,所述壳体底部两侧分别设置气流进口1和气流出口2,所述内体设置在尾气处理部,所述尾气处理部内部设有纵向设置的隔板5,将内体分为左、右部分,从而使得气流进口与气流出口之间形成u型通道,所述内体包括多孔陶瓷8、硫捕集器7和所述壁流式过滤体6,所述壁流式过滤体用于在贫、富氧含量尾气间歇地交替条件下,对尾气及其中的颗粒物进行化学反应;所述硫捕集器用于抑制壁流式过滤体催化剂硫污染中毒失活;所述多孔陶瓷用于保留硫捕集器和壁流式过滤体的反应温度,所述壳体底部内部设有换向圆盘3,其用于在执行器4的控制下,将气流进口进入的进气调节为左内体至右内体的正向气流或是右内体至左内体的反向气流。

本实施例中,所述换向器包括换向器本体和换向器底座,所述执行器的输出端与换向器底座相连,所述换向器本体固定在换向器底座上,换向器本体和换向器底座在执行器的作用下共同转动。所述换向器本体为圆盘状,其表面包括4个均等的分区,其中两分区为空心通孔,二者以圆盘中心为原点中心对称设置,换向器本体的中心与换向器底座固定,所述空心通孔为扇环形,即其圆心角为90°,所述换向器底座包括转轴部和固定在转轴部左右两侧的小隔板,两个小隔板的上端分别与两个扇环的右直边或左直边贴合,执行器控制换向圆盘以预设频率转向,从而定期将气流换向。

左多孔陶瓷81与右多孔陶瓷82、左硫捕集器71与右硫捕集器72、左壁流式过滤体61与右壁流式过滤体62均通过所述隔板对称设置,对称设置的相应部件规格相同,左多孔陶瓷、左硫捕集器、左壁流式过滤体形成左内体通道11,右多孔陶瓷、右硫捕集器、右壁流式过滤体形成右内体通道12,如图2所示,所述换向圆盘处于正向气流位时,气流方向为气流进口-左多孔陶瓷-左硫捕集器-左壁流式过滤体-壳体顶部-右壁流式过滤体-右硫捕集器-右多孔陶瓷-气流出口;所述换向圆盘处于反向气流位时,如图3所示,气流方向为气流进口-右多孔陶瓷-右硫捕集器-右壁流式过滤体-壳体顶部-左壁流式过滤体-左硫捕集器-左多孔陶瓷-气流出口。

如图4所示,所述换向圆盘处于非正向气流位且非反向气流位时,装置内形成不流经内体的旁通流动,即气流方向为气流进口-气流出口。

如图5(a)、(b)所示,所述多孔陶瓷由碳化硅压制成型;所述硫捕集器由碳化硅压制成型,在通道壁面上涂敷催化剂载体和催化剂,其具有so2吸收、存储和快速再生功能;所述壁流式过滤体由碳化硅颗粒材料压制成型,在通道壁面上涂敷催化剂载体和催化剂。作为优选的实施方式,所述硫捕集器在通道壁面上涂敷sio2催化剂载体和pt/ag催化剂,壁流式过滤体通道壁面上涂敷al2o3和ce(zr)o2催化剂载体,催化剂载体分散着pt-ba-k基催化剂,上述催化剂均为dpf领域常用催化剂。

所述多孔陶瓷具有平行通道;所述硫捕集器具有平行通道;所述壁流式过滤体具有平行通道,其相邻通道两端交替开口和封闭,相邻通道间壁为多孔基体,过滤体入口端敞开而末端封闭,标注为通道a;而另一个通道入口端封闭而出口端敞开,标注为通道b;

所述正向流动过程中,尾气流通左多孔陶瓷和左硫捕集器,流入左壁流式过滤体通道a,穿过池壁流入相邻通道b,尾气中颗粒物被捕集在通道a壁面,其化学反应后的残余物沉积在通道a的壁面上;

所述反向流动过程中,尾气流通右多孔陶瓷和右硫捕集器,流入右壁流式过滤体通道b,穿过池壁流入相邻通道a,尾气中颗粒物被捕集在通道b壁面,其化学反应后的残余物沉积在通道b的壁面上。

作为优选的实施方式,所述壳体顶部9设有喷射柴油的蒸汽喷射器10,定期向壳体顶部喷射柴油蒸汽。

具体地,气流管路中,由执行器驱动换向圆盘定时旋转90度置于正、反向流动位置,进、排气管道交替与左、右部内体通道连通,在u型通道内形成气流周期换向往复流动模式,柴油机排放的尾气在左、右半部分内体中周期换向流动。如图6、图8(a)所示,正向流动过程中,尾气流通左边多孔陶瓷和硫捕集器后,流入左边dpf通道a穿过池壁流入相邻通道b,尾气中颗粒物被捕集在通道a壁面涂层上。如图9(b)所示,在贫氧含量条件下,左侧硫捕集器催化剂吸收so2并存储为硫酸盐;左侧dpf通道a壁面催化剂吸收nox并存储为硝酸盐,同时,如图10所示,附着在壁面上pm被尾气中no或催化剂表面活性氧和氧气氧化;右侧dpf通道b壁面催化剂吸收nox并存储为硝酸盐。如图9(a)所示,正向流动过程中、短暂富氧含量条件下(包含定量co、hc和h2还原剂),左侧硫捕集器催化剂内硫酸盐分解并释放so2;左侧dpf通道a壁面催化剂内硝酸盐分解为nox,附着壁面上pm被氧化、而nox被还原成n2,co和hc等成分也被氧化;右侧dpf通道b壁面硝酸盐分解为nox,并被还原成n2,co和hc被氧化;溢出的co和hc在下游右侧硫捕集器中被氧化。另外,正向流动过程中,化学反应灰烬沉积在左侧dpf通道a一侧壁面上;化学反应放出的热量加热并蓄存在左侧dpf、右侧dpf、右侧硫捕集器和右侧多孔陶瓷池壁内。然后,流通过左、右半部分内体内尾气换向,变为反向流动。

反向流动过程中,尾气流通右侧多孔陶瓷和硫捕集器后,流入右边dpf通道a。尾气被正向流动过程中蓄存在内体池壁内热量加热,然后穿过右边dpf池壁流入相邻通道b,尾气中颗粒物被捕集在通道a的壁面上。同时,在正向流动过程中沉积在左边dpf通道a壁面上灰烬残余物,被如图8(b)所示穿过通道b壁面反向气流吹离,由气流携带沉降到灰斗内。在高温壁面作用下,在右、左半部分内体内发生与正向流动过程中相同的化学反应,灰烬残余物沉积在右侧dpf通道a的壁面上。化学反应放出的热量又加热并蓄存在右侧dpf、左侧dpf、左侧硫捕集器和左侧多孔陶瓷池壁内。然后,流通左、右半部分内体的尾气换向,再变为正向流动过程,此过程周而复始。在周期往复流模式下,在装置中沿轴向形成两侧多孔陶瓷具有如图7所示的高温度梯度,而中部两个硫捕集器和dpf具有平坦高温分布。当多孔陶瓷、硫捕集器和dpf中温度超过催化剂载体和催化剂热承受能力时,装置内转换为不流经多孔陶瓷、硫捕集器和dpf结构旁通流动模式。

最后应说明的是:以上各实施例仅用以说明本实用新型的技术方案,而非对其限制;尽管参照前述各实施例对本实用新型进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本实用新型各实施例技术方案的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1