一种采用热管冷却的风力发电机集成冷却系统

文档序号:29631857发布日期:2022-04-13 16:09阅读:132来源:国知局
一种采用热管冷却的风力发电机集成冷却系统

1.本发明涉及风力发电机技术领域,具体涉及一种采用热管冷却的风力发电机集成冷却系统。


背景技术:

2.随着化石能源的日益减少,风能作为太阳能的一种转换形式,越来越受到人们的重视。
3.对于风能的需求不断增大,导致风力发电机的单机容量逐步增大,未来将出现30mw以上的风力发电机组,机舱内风力发电机、齿轮箱和控制变频器等主要部件产生的热量也会大大增加,现有的冷却方式散热效率低,不能满足新型大功率风力发电机的散热要求。
4.目前上述三大主要发热部件的冷却通常采用两套独立的冷却系统,发电机冷却和控制变频器冷却共用一套冷却系统,一般采用循环泵水冷系统,齿轮箱采用单独设置的循环泵供油润滑系统。两套独立的冷却系统也使机舱内部结构复杂,不利于安装和维护,而且复杂的结构也会使得冷却系统热阻增加,降低散热效率。
5.热管式散热器是一种高效散热器。最常用的热管由密封管、吸液芯和蒸汽通道组成,吸液芯环绕在密封管的管壁上,吸液芯浸有能挥发的饱和液体。热管工作时由热管蒸发段吸收热源产生的热量,使其吸液芯中的液体汽化为蒸汽产生压差,受热蒸汽在压差作用下从蒸发段移动至冷凝段,当蒸汽把热量传给冷凝段后,蒸汽冷凝成液体,冷凝的液体在吸液芯的毛细管作用下回流至蒸发段,如此重复上述循环过程进行散热。
6.带有吸液芯的无重力辅助低温热管利用液体低温工质对毛细芯浸润产生的毛细力作为热管的驱动力,使液态低温工质从热管的冷凝段回到蒸发段。但是当整个气体液体循环压力降与最大毛细压头达到平衡,只要稍许加大蒸发量或减少冷凝量,蒸发段即发生干涸和过热,我们把这种现象称为毛细力传热极限。毛细力传热极限往往在工作温度区域出现,因此需要避免热管的毛细力传热极限现象出现。
7.热管式散热器具有很小的热阻。散热器的热阻是由材料的导热性和体积内的有效面积决定的,风冷的全铜或全铝散热器的热阻只能达到0.04℃/w。而热管式散热器可达到0.01℃/w。在自然对流冷却条件下,热管式散热器比实体散热器的性能可提高十倍以上。但是由于目前舱内发电机和控制变频器及周围部件结构复杂,两套独立的冷却系统也使得机舱内部空间狭小,而且由于风力发电机机组单机发电量普遍较小,热管散热器一直并未作为风力发电机冷却系统的选择。目前仅在机舱盖外设置板翅式空气换热器,使热量排放至大气。
8.综上所述,现有的高功率风力发电机存在易引起机舱温度升高,导致风机使用寿命和发电时间减少的问题。


技术实现要素:

9.本发明的目的是为了解决现有的高功率风力发电机存在易引起机舱温度升高,导致风机使用寿命和发电时间减少的问题,进而提供一种采用热管冷却的风力发电机集成冷却系统。
10.本发明的技术方案是:
11.一种采用热管冷却的风力发电机集成冷却系统,所述风力发电机集成冷却系统包括风力发电机本体,风力发电机本体包括筒体机舱盖1和台架2,筒体机舱盖1水平设置,台架2位于筒体机舱盖1内部,且台架2与筒体机舱盖1内壁固定连接;
12.所述风力发电机集成冷却系统还包括热管式散热器3、齿轮箱冷却系统和控制变频器-发电机冷却系统;
13.热管式散热器3位于筒体机舱盖1外部,且热管式散热器3底端与筒体机舱盖1顶端固定连接,热管式散热器3包括换热器本体、隔板4和多个重力热管5,换热器本体底端设有过渡总管,过渡总管上端面加工有多个与过渡总管连通的热管装配孔,多个重力热管5竖直设置在换热器本体上方,重力热管5底端插装在对应的热管装配孔内,重力热管5与换热器本体密封固定连接;过渡总管中部设置隔板4,所述隔板4将过渡总管分割成左右独立的储油腔体401和储液腔体402;
14.齿轮箱冷却系统包括齿轮箱6和油泵7,齿轮箱6的出油口通过连接管与油泵7连接,油泵7通过连接管与热管式散热器3的左侧储油腔体401的进油口连接,左侧储油腔体401的出油口通过连接管与齿轮箱6的进油口连接;
15.控制变频器-发电机冷却系统包括风力发电机8、发电机换热器9、控制变频器10、控制变频器换热器11和冷却液泵12,风力发电机8的冷却液出口与发电机换热器9的第一进液口连接,发电机换热器9的第一出液口通过连接管与冷却液泵12连接,冷却液泵12通过连接管与热管式散热器3的右侧储液腔体402的进液口连接,右侧储液腔体402的出液口通过连接管与发电机换热器9的第二进液口连接,发电机换热器9的第二出液口与风力发电机8的冷却液进口连接;
16.控制变频器10的冷却液出口与控制变频器换热器11的第一进液口连接,控制变频器换热器11的第一出液口通过连接管与冷却液泵12连接,控制变频器10的冷却液进口与控制变频器换热器11的第二出液口连接,控制变频器换热器11的第二进液口通过连接管与右侧储液腔体402的出液口连接。
17.进一步地,储油腔体401为热管式散热器3的齿轮箱冷却部分,储液腔体402为热管式散热器3的控制变频器和发电机冷却部分。
18.进一步地,齿轮箱6、油泵7、风力发电机8、发电机换热器9、控制变频器10、控制变频器换热器11和冷却液泵12均固定安装在台架2上端面。
19.进一步地,重力热管5由上至下依次为冷凝段、绝热段和蒸发段,重力热管5的蒸发段通过热管装配孔插装在过渡总管内部,重力热管5与过渡总管密封连接。
20.进一步地,重力热管5外壁由上至下依次均匀安装有多个翅片18。
21.进一步地,换热器本体包括底座15、顶板16和四个支撑杆17,底座15水平设置,顶板16水平设置在底座15正上方,顶板16与底座15之间通过四个竖直设置的支撑杆17固定连接,底座15内部加工有过渡总管,重力热管5顶端与顶板16固定连接,重力热管5底端与底座
15固定连接。
22.进一步地,风力发电机本体还包括轮毂13和多个风叶桨片14,轮毂13位于圆管状的筒体机舱盖1前端,轮毂13上沿圆周方向固定安装有多个风叶桨片14,轮毂13的传动轴与齿轮箱6的输入轴固定连接,齿轮箱6的输出轴与风力发电机8的输入轴固定连接。
23.进一步地,筒体机舱盖1、重力热管5以及翅片18的外表面均设有防腐涂层,所述防腐涂层的材料为高固体分环氧涂料。
24.进一步地,所述风力发电机集成冷却系统还包括风冷系统,风冷系统位于筒体机舱盖1外部。
25.进一步地,风冷系统包括多个风扇和多个风扇驱动电机,风扇驱动电机安装在筒体机舱盖1顶端,风扇安装在风扇驱动电机的电机轴上,且风扇的扇叶朝向热管式散热器3的重力热管5。
26.本发明与现有技术相比具有以下效果:
27.1、本发明的齿轮箱6外设有进油口和出油口,通过油泵7和连接管与热管式散热器3相连,形成一条独立的冷却回路;风力发电机8和控制变频器10分别设有相应的换热器和冷却液出入口,通过冷却液泵12与热管式散热器3相连,形成另一条独立的冷却回路。最后经过热管式散热器3进行集成冷却。
28.2、本发明采用两条冷却回路进行热管式散热器3集中冷却,取代传统的两套冷却系统独立冷却,集成冷却系统使得风力发电机集成冷却系统不仅使舱内结构简单紧凑,便于舱内设备的安装和维护,还降低了冷却系统的热阻,提升了系统散热效率。
29.3、本发明选择热管式散热器3取代传统板式空气换热器,提高了冷却系统散热效率,解决了大功率风力发电机组机舱内温度过高而引起的使用寿命短等问题。
30.4、本发明的热管式散热器3采用重力热管5。一般的热管式散热器,由于热管管内放置吸液芯,容易出现毛细力传热极限的现象。为使热管式散热器3的散热效率不受季节天气等外在因素影响,一直保持很高的散热效率,在热管式散热器3上安装重力热管5。
31.5、本发明的重力热管5内部采用空腔结构,在重力热管5的蒸发段填充氨作为制冷工质,当工质在蒸发段吸收热量后,液态工质汽化为蒸汽,蒸汽工质在压差的作用下向重力热管5的冷凝段传热,在重力热管5的冷凝段放热冷凝为液态工质,液态工质依靠自身重力回流到蒸发段,不存在毛细力传热极限,如此进行热量循环。
32.6、本发明的热管式散热器3的引入使得风机发电散热部分不再需要外加电源,重力热管5受热自发进行散热循环,随着风力发电机目前逐渐量化生产,热管式散热器3的引入可以解决很大一部分能源;热管式散热器3体积小,重量轻可以节省空间;由于工质散热循环过程均在封闭的重力热管5内进行,不污染环境且运行安全可靠,工作时不需要专门维护;由于重力热管5自身热阻较小,使得风机散热模块热响应速度快,具有很高的散热效率。
33.7、本发明为了节省机舱内部空间,热管式散热器3被安装在筒体机舱盖1上方,为了使热管式散热器3散热效率不受季节和天气的影响,选择安装重力热管5。
34.8、本发明的热管式散热器3底端的过渡总管被隔板4分隔成储油腔体401和储液腔体402,储油腔体401为热管式散热器3的齿轮箱冷却部分,储液腔体402为热管式散热器3的控制变频器和发电机冷却部分。用于冷却齿轮箱6的冷却回路、用于冷却风力发电机8和控制变频器10的冷却回路最后由外部热管式散热器3进行集中冷却,集成设计使冷却系统结
构简单紧凑,便于风机机组的安装和维护,同时冷却系统热阻减小,增加了系统散热效率。
35.9、本发明将机舱的冷却系统进行集成设计,针对30mw以上大功率风力发电机,提出采用热管式散热器进行冷却,采用重力热管使热管式散热器的散热效率不受天气季节等因素的影响。该发明具有体积小,成本低,质量轻,结构紧凑,无污染,可靠性好,散热效率高,便于安装和维护,还可以避免高功率风力发电机引起机舱高温,导致风机使用寿命和发电时间减少等问题。
附图说明
36.图1是本发明的采用热管冷却的风力发电机集成冷却系统的结构示意图;
37.图2是本发明的热管式散热器3、齿轮箱冷却系统和控制变频器-发电机冷却系统的结构示意图;
38.图3是本发明的热管式散热器3的结构示意图;
39.图4是本发明的热管式散热器3的工作示意图;
40.图5是本发明的重力热管5的轴测图。
41.图中:1-筒体机舱盖;2-台架;3-热管式散热器;4-隔板;401-储油腔体;402-储液腔体;5-重力热管;6-齿轮箱;7-油泵;8-风力发电机;9-发电机换热器;10-控制变频器;11-控制变频器换热器;12-冷却液泵;13-轮毂;14-风叶桨片;15-底座;16-顶板;17-支撑杆;18-翅片。
具体实施方式
42.具体实施方式一:结合图1至图5说明本实施方式,本实施方式的一种采用热管冷却的风力发电机集成冷却系统,所述风力发电机集成冷却系统包括风力发电机本体,风力发电机本体包括筒体机舱盖1和台架2,筒体机舱盖1水平设置,台架2位于筒体机舱盖1内部,且台架2与筒体机舱盖1内壁固定连接;
43.所述风力发电机集成冷却系统还包括热管式散热器3、齿轮箱冷却系统和控制变频器-发电机冷却系统;
44.热管式散热器3位于筒体机舱盖1外部,且热管式散热器3底端与筒体机舱盖1顶端固定连接,热管式散热器3包括换热器本体、隔板4和多个重力热管5,换热器本体底端设有过渡总管,过渡总管上端面加工有多个与过渡总管连通的热管装配孔,多个重力热管5竖直设置在换热器本体上方,重力热管5底端插装在对应的热管装配孔内,重力热管5与换热器本体密封固定连接;过渡总管中部设置隔板4,所述隔板4将过渡总管分割成左右独立的储油腔体401和储液腔体402;
45.齿轮箱冷却系统包括齿轮箱6和油泵7,齿轮箱6的出油口通过连接管与油泵7连接,油泵7通过连接管与热管式散热器3的左侧储油腔体401的进油口连接,左侧储油腔体401的出油口通过连接管与齿轮箱6的进油口连接;
46.控制变频器-发电机冷却系统包括风力发电机8、发电机换热器9、控制变频器10、控制变频器换热器11和冷却液泵12,风力发电机8的冷却液出口与发电机换热器9的第一进液口连接,发电机换热器9的第一出液口通过连接管与冷却液泵12连接,冷却液泵12通过连接管与热管式散热器3的右侧储液腔体402的进液口连接,右侧储液腔体402的出液口通过
连接管与发电机换热器9的第二进液口连接,发电机换热器9的第二出液口与风力发电机8的冷却液进口连接;
47.控制变频器10的冷却液出口与控制变频器换热器11的第一进液口连接,控制变频器换热器11的第一出液口通过连接管与冷却液泵12连接,控制变频器10的冷却液进口与控制变频器换热器11的第二出液口连接,控制变频器换热器11的第二进液口通过连接管与右侧储液腔体402的出液口连接。
48.具体实施方式二:结合图2和图3说明本实施方式,本实施方式的储油腔体401为热管式散热器3的齿轮箱冷却部分,储液腔体402为热管式散热器3的控制变频器和发电机冷却部分。如此设置,热管式散热器3的齿轮箱冷却部分用于冷却齿轮箱6产生的热量。热管式散热器3的控制变频器和发电机冷却部分用于冷却风力发电机8和控制变频器10产生的总热量。其它组成和连接关系与具体实施方式一相同。
49.具体实施方式三:结合图1和图2说明本实施方式,本实施方式的齿轮箱6、油泵7、风力发电机8、发电机换热器9、控制变频器10、控制变频器换热器11和冷却液泵12均固定安装在台架2上端面。其它组成和连接关系与具体实施方式一或二相同。
50.具体实施方式四:结合图2至图5说明本实施方式,本实施方式的重力热管5由上至下依次为冷凝段、绝热段和蒸发段,重力热管5的蒸发段通过热管装配孔插装在过渡总管内部,重力热管5与过渡总管密封连接。如此设置,重力热管5的蒸发段分别与储油腔体401内的润滑油和储液腔体402内的冷却液接触。其它组成和连接关系与具体实施方式一、二或三相同。
51.具体实施方式五:结合图2至图5说明本实施方式,本实施方式的重力热管5外壁由上至下依次均匀安装有多个翅片18。如此设置,热管式散热器3将重力热管5蒸发段与热流工质接触,重力热管5工质选择氨。润滑油和冷却液换热系数较大,可以高效地进行热量交换,重力热管5绝热段的长度根据实际需求而定,冷凝段处于外界环境中,与空气进行对流换热,由于空气换热系数较小,因此在重力热管5冷凝段外侧加装翅片18以便于强化换热。在使用过程中热管式散热器3中重力热管5排布和数量根据舱内实际传热量布置。其它组成和连接关系与具体实施方式一、二、三或四相同。
52.具体实施方式六:结合图3说明本实施方式,本实施方式的换热器本体包括底座15、顶板16和四个支撑杆17,底座15水平设置,顶板16水平设置在底座15正上方,顶板16与底座15之间通过四个竖直设置的支撑杆17固定连接,底座15内部加工有过渡总管,重力热管5顶端与顶板16固定连接,重力热管5底端与底座15固定连接。其它组成和连接关系与具体实施方式一、二、三、四或五相同。
53.具体实施方式七:结合图1说明本实施方式,本实施方式的风力发电机本体还包括轮毂13和多个风叶桨片14,轮毂13位于圆管状的筒体机舱盖1前端,轮毂13上沿圆周方向固定安装有多个风叶桨片14,轮毂13的传动轴与齿轮箱6的输入轴固定连接,齿轮箱6的输出轴与风力发电机8的输入轴固定连接。如此设置,在风力发电工作过程中,风叶桨片14在风力驱动下旋转,其转速通过传动轴传至齿轮箱6进行加速,加速后的传动轴与风力发电机8相连,从而带动风力发电机8工作产生电能。其它组成和连接关系与具体实施方式一、二、三、四、五或六相同。
54.具体实施方式八:结合图1至图5说明本实施方式,本实施方式的筒体机舱盖1、重
力热管5以及翅片18的外表面均设有防腐涂层,所述防腐涂层的材料为高固体分环氧涂料。如此设置,高固体分环氧涂料具有较好的防腐蚀性,通过在翅片和塔筒外部均匀设置防腐涂层,能够有效地解决海上风力发电机生锈的问题。其它组成和连接关系与具体实施方式一、二、三、四、五、六或七相同。
55.具体实施方式九:结合图1说明本实施方式,本实施方式的所述风力发电机集成冷却系统还包括风冷系统,风冷系统位于筒体机舱盖1外部。如此设置,采用风冷系统对热管式散热器3进行散热冷却。其它组成和连接关系与具体实施方式一、二、三、四、五、六、七或八相同。
56.具体实施方式十:结合图1说明本实施方式,本实施方式的风冷系统包括多个风扇和多个风扇驱动电机,风扇驱动电机安装在筒体机舱盖1顶端,风扇安装在风扇驱动电机的电机轴上,且风扇的扇叶朝向热管式散热器3的重力热管5。其它组成和连接关系与具体实施方式的一、二、三、四、五、六、七、八或九相同。
57.工作原理
58.结合图1至图5说明本发明的采用热管冷却的风力发电机集成冷却系统的工作原理:
59.齿轮箱6上分别设有进油口和出油口,进油口和出油口分别通过连接管与热管式散热器3的储油腔体401连接,在齿轮箱6工作过程中会产生大量的热量,热量被齿轮箱6内润滑油吸收,润滑油在油泵7的驱动下从出油口流出,进入热管式散热器3的储油腔体401,并与热管式散热器3的储油腔体401中的重力热管5蒸发段接触,重力热管5蒸发段内液态工质受热气化为液态蒸汽流向冷凝段,后由翅片18将热量散到大气中,冷却后的润滑油从进油口流入,进行第二次循环冷却,如此反复。
60.风力发电机8的输入端和齿轮箱6的输出端由被加速的传动轴相连,风力发电机8和控制变频器10上分别设有发电机换热器9和控制变频器换热器11,发电机换热器9和控制变频器换热器11通过连接管与热管式散热器3的储液腔体402连接,风力发电机8和控制变频器10工作过程中产生大量热量,热量被冷却液吸收后,在冷却液泵12的驱动下从冷却液出口流出至热管式散热器3的储液腔体402进行冷却,并与热管式散热器3的储液腔体402中的重力热管5蒸发段接触,重力热管5蒸发段内液态工质受热气化为液态蒸汽流向冷凝段,后由翅片18将热量散到大气中,冷却后的润滑油从进油口流入,进行第二次循环冷却,如此反复。
61.以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1