一种镁合金微弧氧化电解液及其应用的制作方法

文档序号:16550819发布日期:2019-01-08 21:06阅读:633来源:国知局
一种镁合金微弧氧化电解液及其应用的制作方法

本发明属于镁合金表面处理的技术领域,具体的说是一种镁合金耐腐蚀涂层电解液及其制备方法。



背景技术:

镁合金作为最轻的金属结构材料,具有比强度和比刚度高、阻尼减震性好等优点,在汽车、轨道交通等领域都具有重要的应用价值和广阔的市场前景。因为镁的化学性质非常活泼,在空气中与氧气能够形成疏松多孔的mgo薄膜,膜的pbr仅为0.8,不能对基体起保护作用;并且镁的标准电极电位为-2.37v,在常用介质中的腐蚀电位很低,因此镁合金耐腐蚀性能不好。镁合金在各种环境中的应用,必然会产生腐蚀问题。镁合金在各种服役环境中,腐蚀会影响其使用寿命,增加危险系数,因此腐蚀问题是制约镁合金在各领域应用的关键。

微弧氧化技术,是基于现有的阳极氧化技术发展而来的新型的表面腐蚀防护手段,可以在镁合金表面形成原位生长陶瓷防护膜层,大幅提高镁合金的耐腐蚀性能,因其绿色环保、高效节能而具有非常广阔的发展前景。镁合金微弧氧化陶瓷膜层具有硬度高、结合力紧密、耐环境腐蚀等优点,可以很大程度上满足严酷服役环境中镁合金结构件的使用要求。到目前为止,镁合金微弧氧化主要集中研究电参数的优化和电解液成分的调控。



技术实现要素:

针对上述镁合金材料耐腐蚀性能较差的问题,本发明提供了一种镁合金耐腐蚀涂层电解液及其应用。

为实现上述目的,本发明采用的技术方案如下:

一种镁合金微弧氧化电解液,镁合金微弧氧化电解液为每升水(去离子水)中10-20g偏铝酸钠、5-10g/氢氧化钾、5-20g亲水性金红型纳米tio2、5-20g亲水性纳米α-al2o3和5-20g亲水性vk-r20w型纳米zro2。

所述亲水性金红型纳米tio2粒径为20-25nm;亲水性纳米α-al2o3粒径为20-30nm;亲水性vk-r20w型纳米zro2粒径为40-50nm。

一种镁合金微弧氧化电解液的应用,所述电解液在形成镁合金耐腐蚀涂层中的应用。

一种利用所述镁合金耐腐蚀涂层的制备方法,将权利要求1所述电解液通过微弧氧化工艺方式于预处理后的样品上形成镁合金耐腐蚀涂层;其中,微弧氧化工艺电压300-450v,脉冲数300-600,脉冲宽度80-300us,氧化时间20-40min。

所述氧化过程中电解液温度通过冷却循环水,使其保持在20-40℃。

所述样品的预处理:首先依次用400#-5000#的水砂纸对样品表面进行打磨,抛光布抛光;使用丙酮对样品表面进行清洗;然后依次用水和无水乙醇超声清洗;最后用去离子水清洗,热风吹干,待用。

所述微弧氧化后采用去离子水清洗,热风吹干,即于样品表面形成耐腐蚀涂层。

本发明所具有的优点:

本发明通过调控镁合金微弧氧化工艺参数,在电解液中加入特定尺寸的亲水性金红型tio2(粒径20-25nm)、亲水性α-al2o3(粒径20-30nm)、亲水性vk-r20w型zro2(粒径40-50nm)纳米颗粒,制备出具有优异耐腐蚀性能的镁合金微弧氧化陶瓷防护层。经过本发明制得的镁合金微弧氧化陶瓷防护层致密,从而使镁合金的自腐蚀电位明显正移,发生腐蚀的倾向性降低。本发明中所添加的纳米tio2、α-al2o3、zro2颗粒的均水溶性良好,纳米颗粒在微弧氧化过程中进入制得的氧化膜层中,在镁合金表面形成优异的防滑层,使合金的耐蚀性得到显著提高。

本发明工艺流程简单,操作方便,可以在镁合金表面形成耐腐蚀性能优异的陶瓷膜层,添加的水溶性纳米颗粒均属于环境友好型,绿色环保,具有显著的应用价值,可满足航空航天、汽车、轨道交通等领域对新型耐蚀镁合金材料的实际需求,可以有效推动先进镁合金材料在严酷服役环境中应用。

附图说明

图1为本发明实施例1中所制备的微弧氧化az80高强镁合金外观照片。

图2为本发明实施例1中az80镁合金微弧氧化前后电化学开路电位对比图。

图3为本发明实施例1中az80镁合金微弧氧化前后电化学交流阻抗对比图。

图4为本发明实施例2中所制备的微弧氧化mg-y-nd镁合金外观照片。

图5为本发明实施例2中mg-y-nd镁合金微弧氧化前后电化学开路电位对比图。

图6为本发明实施例2中mg-y-nd镁合金微弧氧化前后电化学交流阻抗对比图。

具体实施方式

下面通过具体实施例对本发明进行具体描述,在此指出以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术熟练人员可根据上述发明内容做出一些非本质的改进和调整。

实施例1

镁合金耐腐蚀涂层电解液:所述配置的电解液为每去离子水中含偏铝酸钠10g/l、氢氧化钾5g/l、亲水性金红型纳米tio2(粒径20-25nm)10g/l、亲水性纳米α-al2o3(粒径20-30nm)10g/l、亲水性vk-r20w型纳米zro2(粒径40-50nm)5g/l;

其中,亲水性金红型纳米tio2、5-20g亲水性纳米α-al2o3和5-20g亲水性vk-r20w型纳米zro2均购自上海阿拉丁生化科技股份有限公司。

镁合金耐腐蚀涂层形成方法,微弧氧化处理的样品为高强az80镁合金,尺寸为40mm×30mm×3mm,具体操作步骤如下:

(1)预处理:依次用400#~5000#的水砂纸对镁合金表面进行打磨,抛光布抛光;使用丙酮对镁合金表面进行清洗;然后依次用水和无水乙醇超声清洗;最后用去离子水清洗,热风吹干;

(2)微弧氧化:将预处理好的镁合金材料安装在阳极上后,浸入配制好的电解液中,微弧氧化参数为电压350v,脉冲数500,脉冲宽度80us,氧化时间30min,电解液温度通过冷却循环水,保持在20~40℃;

(3)后处理:镁合金微弧氧化完成后,使用去离子水清洗,热风吹干。

对上述进行微弧氧化处理的高强az80镁合金样品进行拍照和电化学腐蚀测试(参见图1-3)。由图1可见,未进行微弧氧化处理的合金基体表面具有金属光泽,微弧氧化后合金表面呈现均匀的灰色,对比明显。由图2可见,经过微弧氧化处理后,az80镁合金的开路电位呈现出明显的下降趋势,说明合金发生腐蚀的倾向减小,耐腐蚀性能提高。由图3可见,az80镁合金的阻抗弧的半径明显增大,说明合金的耐腐蚀性能显著提高。

本发明中,在az80镁合金微弧氧化电解液中添加亲水性金红型纳米tio2、亲水性纳米α-al2o3、亲水性vk-r20w型纳米zro2颗粒后,在az80镁合金制得的微弧氧化膜层致密。ocp曲线显示,加入纳米颗粒,制备的微弧氧化膜层比镁合金基体的开路电位正移30mv,发生腐蚀的倾向性降低。阻抗图谱表明,电阻值增加了2个数量级。水溶性纳米颗粒能够随镁合金的微弧氧化过程进入制得的氧化膜层中,弥散分布于氧化膜及微孔内部,有效能够增加膜层厚度和硬度,使膜层的耐蚀性得到提高。

实施例2

镁合金耐腐蚀涂层电解液:所述配置的电解液包括偏铝酸钠15g/l、氢氧化钾10g/l、亲水性金红型纳米tio2(粒径20-25nm)20g/l、亲水性纳米α-al2o3(粒径20-30nm)20g/l、亲水性vk-r20w型纳米zro2(粒径40-50nm)20g/l。

镁合金耐腐蚀涂层形成方法:微弧氧化处理的样品为铸态mg-y-nd镁合金,尺寸为40mm×30mm×3mm,具体操作步骤如下:

(1)预处理:依次用400#-5000#的水砂纸对镁合金表面进行打磨,抛光布抛光;使用丙酮对镁合金表面进行清洗;然后依次用水和无水乙醇超声清洗;最后用去离子水清洗,热风吹干;

(2)微弧氧化:将预处理好的镁合金材料安装在阳极上后,浸入配制好的电解液中,微弧氧化参数为:电压450v,脉冲数600,脉冲宽度150us,氧化时间40min,电解液温度通过冷却循环水,保持在20~40℃;

(3)后处理:镁合金微弧氧化完成后,使用去离子水清洗,热风吹干。

对上述进行微弧氧化处理的铸态mg-y-nd镁合金样品进行拍照和电化学腐蚀测试(参见图4-6)。由图4可见,未进行微弧氧化处理的合金基体表面具有金属光泽,微弧氧化后合金表面呈现均匀的灰色,对比明显。由图5可见,经过微弧氧化处理后,铸态mg-y-nd镁合金的开路电位呈现出明显的下降趋势,说明合金发生腐蚀的倾向减小,耐腐蚀性能提高。由图6可见,铸态mg-y-nd镁合金的阻抗弧的半径明显增大,说明合金的耐腐蚀性能显著提高。

本发明中,在铸态mg-y-nd镁合金微弧氧化电解液中添加亲水性金红型纳米tio2、亲水性纳米α-al2o3、亲水性vk-r20w型纳米zro2颗粒后,在铸态mg-y-nd镁合金制得的微弧氧化膜层致密。ocp曲线显示,加入纳米颗粒,制备的微弧氧化膜层比镁合金基体的开路电位正移40mv,发生腐蚀的倾向性降低。阻抗图谱表明,电阻值增加了1个数量级。水溶性纳米颗粒能够随镁合金的微弧氧化过程进入制得的氧化膜层中,弥散分布于氧化膜及微孔内部,有效能够增加膜层厚度和硬度,使膜层的耐蚀性得到提高。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1