提高循环寿命的锂金属负极集流体表面热氧化调控方法

文档序号:25346221发布日期:2021-06-08 11:59阅读:171来源:国知局
提高循环寿命的锂金属负极集流体表面热氧化调控方法

1.本发明属于表面技术及电化学技术领域,尤其涉及提高循环寿命的锂金属负极集流体表面热氧化调控方法。


背景技术:

2.随着工业生产对电子设备移动性和小型化的要求越来越高,对环境污染的控制也越来越严格,增强可充电电池的稳定性和容量变得越来越重要。目前,锂离子电池已成功应用于大多数便携式电子设备中,例如手机、计算机和数码相机等。由于对能量存储的需求不断增长,电动汽车和用于负载均衡应用的大型储能系统都需要能量密度更高的设备。然而,由于插层化学的本质限制,锂离子电池的能量密度已达到理论极限。在许多电池化学反应的研究中,锂金属负极因其理论比容量高达3860mah g
‑1,与标准氢电极相比的极低还原电位为

3.040v而受到广泛关注。
3.然而,尽管锂金属电池拥有上述的极大优势,锂电池中枝晶生长导致许多问题。有可能会刺穿隔膜接触电池正极材料,造成正负极之间的电子接触,导致电池短路、枝晶转化成不可利用的死锂、安全隐患等问题。


技术实现要素:

4.本发明的目的是提供提高循环寿命的锂金属负极集流体表面热氧化调控方法,有效的抑制锂枝晶生长,提高电池长循环寿命。
5.为解决上述问题,本发明的技术方案为:
6.提高循环寿命的锂金属负极集流体表面热氧化调控方法,包括如下步骤:
7.s1:对金属集流体表面进行电解除油处理,电流密度为1~10asd,除油时间为20~200s;
8.s2:将经过所述步骤s1处理过的金属集流体进行表面酸洗处理;
9.s3:于经过所述步骤s2处理的金属集流体的表面形成三维结构,得到三维集流体;
10.s4:将所述三维集流体进行清洗处理;
11.s5:将经过所述步骤s4处理的三维集流体进行热氧化处理,热氧化温度为300~400℃,热氧化时间为5~15min,三维集流体热氧化处理完成后降至室温;
12.s6:将经过所述步骤s5处理的三维集流体作为正极,提供金属锂片作为负极组装纽扣电池;
13.s7:利用电化学工作站在三维集流体上电镀锂金属,放电速度为0.2~0.8ma/cm2,锂金属的单位面积容量为1~3mah/cm2。
14.优选地,所述步骤s1中的金属集流体为铜片或镍片或泡沫铜。
15.优选地,所述步骤s2中的酸为盐酸或硫酸或硝酸。
16.优选地,所述步骤s3具体为:采用电化学沉积技术或化学沉积技术或磁控溅射技术于经过所述步骤s2处理的金属集流体的表面形成三维结构,得到三维集流体。
17.优选地,所述步骤s4具体为:将所述三维集流体表面采用去离子水清洗,清洗结束后,采用压缩氮气将三维集流体吹干。
18.优选地,所述热氧化温度为350℃,所述热氧化时间为10min。
19.优选地,所述电流密度为5asd,所述除油时间为60s。
20.优选地,所述步骤s6具体为:将经过所述步骤s5处理的三维集流体作为正极放入纽扣电池壳中,加入电解液,放置电池隔膜,再滴加电解液后,放置作为负极的金属锂片,再依次放置垫片、弹片和金属负极壳,最后采用液压机将纽扣电池压紧完成组装。
21.优选地,所述步骤s7中,放电速度为0.5ma/cm2,锂金属的单位面积容量为2mah/cm2。
22.本发明由于采用以上技术方案,使其与现有技术相比具有以下的优点和积极效果:
23.1)本发明提供了提高循环寿命的锂金属负极集流体表面热氧化调控方法,先对金属集流体依次进行除油处理和酸洗处理,然后于金属集流体的表面形成三维结构,再对三维集流体表面进行热氧化处理,最后以三维集流体为正极,金属锂片为负极组装纽扣电池,利用电化学工作站在三维集流体上电镀锂金属。本发明通过热氧化处理三维集流体表面,实现负极集流体表面的亲锂性改变,来提高锂金属在集流体表面的沉积均匀性,有效抑制锂枝晶生长,提高电池长循环寿命,且本发明提供的提高循环寿命的锂金属负极集流体表面热氧化调控方法易于操作,成本低廉。
附图说明
24.图1为本发明实施例提供的提高循环寿命的锂金属负极集流体表面热氧化调控方法的步骤流程图;
25.图2为表面沉积锂金属后的三维集流体的表面形貌电镜图;
26.图3为改性后集流体

锂与原始集流体

锂组装的对称电池长循环性能对比图。
具体实施方式
27.以下结合附图和具体实施例对本发明提出的提高循环寿命的锂金属负极集流体表面热氧化调控方法作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。
28.目前,抑制锂枝晶的方法主要有:

人工sei膜,

设计三维化负极骨架,

改善负极材料的亲锂性,

电解液添加剂,

固态电解质。通过有效的锂负极设计来减缓锂枝晶的生长是目前较为有效的解决方法之一,而本发明所采用的热氧化调控方法目前尚未在相关研究中报道过。
29.实施例一
30.参看图1所示,本实施例提供了提高循环寿命的锂金属负极集流体表面热氧化调控方法,包括如下步骤:
31.s1:对金属集流体表面进行电解除油处理,电流密度为1~10asd,除油时间为20~200s;
32.具体为,在本实施例中,金属集流体可以选用铜片或镍片或泡沫铜,将切割好的金
属集流体放入电解除油液中,对金属集流体进行除油处理;
33.在本实施例中,电流密度优选为5asd,除油时间优选为60s;
34.s2:将经过步骤s1处理过的金属集流体进行表面酸洗处理;
35.具体为,将金属集流体放入酸溶液中浸泡一段时间后去除,再用去离子水进行清洗,在本实施例中,酸溶液为盐酸或硫酸或硝酸;
36.s3:于经过步骤s2处理的金属集流体的表面形成三维结构,得到三维集流体;
37.具体为,采用电化学沉积技术或化学沉积技术或磁控溅射技术中的任意一种,调整相关参数后于金属集流体的表面制备出特定形貌的三维结构,在本实施例中,三维结构宏观上为片状,相较传统的集流体网等结构具有更高的体积比容量和更高的柔性适应性;
38.s4:将三维集流体进行清洗处理;
39.具体为,将三维集流体表面采用去离子水清洗,清洗结束后,采用压缩氮气将三维集流体吹干;
40.s5:将经过步骤s4处理的三维集流体进行热氧化处理,热氧化温度为300~400℃,热氧化时间为5~15min,使用热氧化法对集流体片进行改性处理,依托集流体片表面三维结构从而形成具有亲锂性的表面,三维集流体热氧化处理完成后降至室温;
41.在本实施例中,热氧化温度优选为350℃,所述热氧化时间优选为10min;
42.s6:将经过步骤s5处理的三维集流体作为正极,提供金属锂片作为负极组装纽扣电池;
43.具体为,将三维集流体作为正极放入型号为cr2032纽扣电池壳中,加入电解液,放置电池隔膜,再滴加电解液后,放置作为负极的金属锂片,再依次放置垫片、弹片和金属负极壳,最后采用液压机将纽扣电池压紧完成组装;
44.在本实施例中,还提供一个对比组,提供一个原始金属集流体,将改性过后的三维集流体片和原始金属集流体片分别作为正极放入cr2032纽扣电池壳中,加入电解液后,放置电池隔膜,再滴加电解液后,放置切割好的金属锂片,最后依次放置垫片、弹片和金属负极壳,采用液压机将纽扣电池压紧,组装完成;
45.s7:利用电化学工作站在三维集流体上电镀锂金属,放电速度为0.2~0.8ma/cm2,锂金属的单位面积容量为1~3mah/cm2;
46.具体为,在本实施例中,将装有三维集流体和原始金属集流体的纽扣电池各自连接至电池专用工作站,以0.5ma/cm2的放电速度电镀单位面积容量为1~3mah/cm2的锂金属后,拆除纽扣电池得到两种镀有锂金属的负极片。
47.最后,可将电镀完成的两种集流体片分别组装对称电池进行长循环性能验证。
48.实施例二
49.本实施例提供了提高循环寿命的锂金属负极集流体表面热氧化调控方法,包括如下步骤:
50.步骤1),将c194冷轧铜带切割成所需尺寸,即70mm
×
50mm;
51.步骤2),将切割好的铜片放入电解除油液中,电流密度为5.0asd,除油时间为60s;
52.步骤3),将除油清洗后的基体放入20%硫酸溶液浸泡30s,去除表面氧化物同时将新鲜的基体露出;
53.步骤4),将基体挂入用去离子水配置好的镀液中进行化学沉积后,将样品用去离
子水清洗干净,冷风吹干;
54.步骤5),将经过步骤4)处理之后的铜片放入加热板上进行加热,加热温度为350℃,气体氛围为空气,加热时间为10分钟,加热完成后将铜片缓慢降至室温;
55.步骤6),将改性过后的三维结构铜片和原始金属集流体片分别作为正极放入型号为cr2032纽扣电池壳中,加入配置好的溶于体积比为1:1的dol:dme溶剂中的1mol/l litfsi(含有1%lino3)电解液后,放置celgard 2400电池隔膜,再滴加电解液后,放置切割好的金属锂片,最后依次放置垫片、弹片和金属负极壳,采用液压机将纽扣电池压紧,组装完成;
56.步骤7),将步骤6)中组装好的装有两种集流体的纽扣电池各自连接至电池专用工作站,以0.5ma/cm2的放电速度,在三维集流体和原始铜片上分别电镀2mah/cm2锂金属,其中经过改性的三维集流体沉积锂后表面形貌如图1所示。
57.将电镀完成的热氧化处理三维集流体

锂和原始铜片

锂分别组装对称电池,并以1ma cm
‑2的充放速率和50%的充放电深度对其进行长循环性能的测试,循环测试结果如图2所示。观察到1600h后热氧化处理三维集流体

锂组装的对称电池仍可稳定循环,而在不到500h时,原始铜片

锂组装的对称电池已开始产生锂枝晶的生长。
58.可知,本实施例提供的提高循环寿命的锂金属负极集流体表面热氧化调控方法,可以实现负极集流体亲锂化的改善,并通过改善锂金属在集流体片上的沉积均匀性实现对锂枝晶的抑制和电池长循环性能的提升。
59.上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式。即使对本发明作出各种变化,倘若这些变化属于本发明权利要求及其等同技术的范围之内,则仍落入在本发明的保护范围之中。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1