铝合金表面的疏水结构的制备方法
【技术领域】
[0001]本发明涉及金属表面改性处理领域,特别涉及一种铝合金疏水表面的制备方法。
【背景技术】
[0002]铝合金是应用最广泛的金属材料,具有强度高、易于加工成型以及导热性好等优点,在航空航天、汽车以及模具等技术领域有着非常广泛的应用。疏水表面具有耐腐蚀、自清洁、抗结冰、防粘着等特性。制备出具有疏水表面的铝合金,对铝合金的性能改善和应用推广有着重要意义。
[0003]疏水和超疏水现象在自然界中普遍存在,典型的如荷叶表面和昆虫翅膀,其微观形貌为特殊的微米-纳米复合结构。仿照这些生物体特殊的表面微观结构,在铝合金表面构筑类似的表面结构,并通过低表面能物质的修饰,可以制备获得接近超疏水特性的铝合金。
[0004]铝合金微纳表面结构的构筑方法有模版法、电化学法、化学刻蚀法、阳极氧化法以及以上几种方法之间的结合方法等。但这些方法普遍存在制备过程复杂,或制备出的铝合金表面硬度低、耐磨性耐腐蚀性不佳等缺点。
【发明内容】
[0005]本发明是针对上述问题进行的,目的在于提供一种铝合金表面疏水结构的制备方法,使疏水结构的硬度高、接近超疏水特性。
[0006]本发明为实现上述目的,采用了以下的技术方案:
[0007]本发明提供一种铝合金表面的疏水结构的制备方法,其特征在于,包括以下步骤:铝合金表面预处理步骤,对铝合金的表面进行精细打磨,然后采用去离子水冲洗,再采用丙酮超声清洗后再次用去离子水冲洗,在70°C下干燥,得到预处理后的铝合金;配置微弧氧化电解液步骤,将氢氧化钾和硅酸钠溶解在去离子水中,使氢氧化钾的浓度为1.0g/L,硅酸钠的浓度为3.0g/L,将溶液搅拌至透明无沉淀,得到微弧氧化电解液;微弧氧化处理步骤,将微弧氧化电解液放入不锈钢容器,将该不锈钢容器与微弧氧化设备的负电极相连,将该微弧氧化设备的正电极与预处理后的铝合金相连,并使预处理后的铝合金完全浸入微弧氧化电解液中,然后进行微弧氧化处理,处理完成后将铝合金去除并进行清洗和干燥,得到微弧氧化处理后的铝合金;配置氟硅烷处理液步骤,将氟硅烷溶解在乙醇中,配置成体积百分比浓度为1.0?1.5%的氟硅烷乙醇溶液,加入乙酸将该氟硅烷乙醇溶液的pH调节为3.5?3.7,得到氟硅烷处理液;氟硅烷表面修饰步骤,将微弧氧化处理后的铝合金浸入氟硅烷处理液,浸泡40min,然后将浸泡后的铝合金取出,在70°C下烘干,再在130°C下真空处理lh,得到表面为疏水结构的铝合金,其中,微弧氧化处理的工艺参数为:正向电压为400?550V,负向电压为-30V,工作频率为400Hz,正负电压占空比为25/75,处理时间为10 ?30mino
[0008]进一步,本发明所提供的铝合金表面的疏水结构的制备方法,还可以具有这样的特征:其中,氟硅烷是十七氟癸基三甲氧基硅烷。
[0009]发明的作用与效果
[0010]根据本发明所提供的铝合金表面的疏水结构的制备方法,因为采用微弧氧化处理在铝合金表面形成陶瓷质氧化膜,然后采用氟硅烷对铝合金进行低表面能的修饰,从而获得疏水的铝合金表面,因此该制备方法制备出的铝合金具有高硬度、近超疏水特性的疏水结构表面,并且该制备方法操作简便、成本低,可用于大尺寸的铝合金制件。
【附图说明】
[0011]图1是实施例一制备的铝合金的表面形貌图;和
[0012]图2是对比例制备的铝合金的表面形貌图。
【具体实施方式】
[0013]以下结合附图,对本发明所提供的铝合金表面的疏水结构的制备方法作详细阐述。
[0014]本发明的实施例和对比例所采用的铝合金为牌号AZ10S8G的航空铸铝,购自ADRIERS公司;氟硅烷为十七氟癸基三甲氧基硅烷,牌号为F-1061,购自泉州市思康新材料发展有限公司;丙酮(化学纯)、无水乙醇(化学纯)、氢氧化钾(分析纯)、硅酸钠(分析纯)以及乙酸(化学纯)均购自国药集团化学试剂有限公司。
[0015]〈实施例一〉
[0016]铝合金表面疏水结构的制备方法包括以下步骤:
[0017]步骤一,铝合金表面预处理。采用线切割装置将铸铝样品切割为长40mm,宽20mm,厚3mm的试样,然后依次采用规格为180#、400#、800#和1000#的金相砂纸打磨试样表面。打磨后的铸铝试样采用去离子水冲洗,然后在ds-2510dth型超声波清洗器中用丙酮清洗30min,再用去离子水冲洗,在70°C下干燥。
[0018]步骤二,配置微弧氧化电解液。称取3.0g氢氧化钾和9.0g硅酸钠,加入3L去离子水中,用玻璃棒将溶液搅拌至透明无沉淀,得到微弧氧化电解液。
[0019]步骤三,微弧氧化处理。将微弧氧化电解液倒入直径为300mm,高度为200mm的不锈钢容器中,将该不锈钢容器与微弧氧化设备的负电极相连。本实施例所采用的是哈尔滨工业大学工艺技术研宄院的WHD-30微弧氧化设备。将步骤一预处理过的铸铝试样夹持在微弧氧化设备的正电极上,并放入不锈钢容器,完全浸入微弧氧化电解液中。
[0020]采用恒电压工作模式,设置正向电压为480Hz,负向电压为-30V,工作频率为400Hz,正负电压占空比为25/75,进行20min的微弧氧化处理。微弧氧化处理完成后将试样取出,并采用去离子水超声清洗30min,然后在70°C下干燥。
[0021]步骤四,配置氟硅烷处理液。量取0.5ml十七氟癸基三甲氧基硅烷,加入50ml无水乙醇,配置成体积百分比浓度为1%的氟硅烷乙醇溶液,向该氟硅烷乙醇溶液中加入乙酸,将溶液的PH调节为3.5。对溶液进行磁力搅拌2h,得到无色透明的氟硅烷处理液。
[0022]步骤五,氟硅烷表面修饰。将步骤三得到的微弧氧化处理后的铸铝试样浸入步骤四制备的氟硅烷处理液,浸泡40min。然后将试样取出,在70°C下干燥,然后在130°C下真空热处理lh,获得具备疏水结构表面的铝合金试样。
[0023]图1是实施例一制备的铝合金的表面形貌图。
[0024]如图1所示,从铝合金表面疏水结构的扫描电子显微镜(SEM)图像可见,本实施例制备的铝合金表面的疏水结构中存在大量的微米级圆孔和凸起结构。
[0025]采用德国KRUSS公司的型号为DSA100的接触角测试仪对本实施例制备获得的铝合金的疏水结构表面进行接触角测试。在试样表面取五个点测量接触角,然后取其平均值。
[0026]测量表明本实施例制备的铝合金表面的疏水结构的接触角为145±4°。
[0027]采用德国Zwick/Roell公司的显微维氏硬度试验机测量试样表面的硬度,取4个点测试,然后取硬度平均值。本实施例的铝合金试样表面硬度为124±