本实用新型涉及隧道施工中的岩石隧道掘进机(TBM)领域,具体涉及一种可以实现任意断面形状隧道开挖的并联机器人支撑、可开挖任意断面隧道的柔臂掘进机及其掘进方法。
背景技术:
岩石隧道掘进机(TBM)是一种集机械、电子、液压、激光等技术于一体的大型隧道开挖装备,在山岭隧道及城市地铁工程建设中发挥着重要作用。目前该种掘进机的开挖断面基本为圆形,虽然也有少部分可以完成矩形、马蹄形等异形断面的案例,但是这些异形断面全部应用于软土隧道开挖,在岩石隧道工程中还未见,并且该种掘进机开挖断面一旦确定,在应用过程中就无法再次改变,其开挖形状单一,应用范围受限,无法做到任意断面开挖。目前在岩石隧道中,成形断面采用马蹄形等异形断面的工程越来越多,如果采用传统的圆形掘进机开挖,势必增大了工程开挖量,同时多挖的一部分还要回填,不仅增大了工程成本,还延长了工期。
技术实现要素:
本实用新型要解决的技术问题是采用传统的圆形掘进机开挖岩石隧道中的异形断面,开挖量大、需要回填、工程成本高、工期长,提供一种通过控制并联机器人臂的姿态,实现结构灵活、断面转换范围大,真正实现岩石隧道任意断面的开挖的并联机器人支撑、可开挖任意断面隧道的柔臂掘进机。
为解决上述技术问题,本实用新型采用下述技术方案:一种并联机器人支撑、可开挖任意断面隧道的柔臂掘进机,包括刀盘刀具系统、驱动系统、前支撑和主梁,前支撑设置在主梁上,所述的驱动系统前部与刀盘刀具系统连接,驱动系统通过并联机器人臂与前支撑柔性连接。
所述的并联机器人臂为并联结构形式的液压油缸组,液压油缸组前端与驱动系统铰接连接、后端与前支撑铰接连接。
所述液压油缸组前端通过球铰座或万向接头与驱动系统铰接连接,后端通过球铰座或万向接头与前支撑铰接连接。
所述的驱动系统通过液压油缸组与前支撑连接成桁架结构,所述液压油缸组至少有三组,每组至少有一个液压油缸。至少三组的液压油缸组的两端分别在驱动系统和前支撑上均匀分布
所述的液压油缸组有三组,每组有一个液压油缸。
所述的液压油缸组有三组,每组有两个液压油缸。
所述的液压油缸组有四组,每组有两个液压油缸。
所述的刀盘刀具系统下方设有出渣系统,出渣系统前端伸至刀盘刀具系统下方、后端与皮带机相连。
所述的出渣系统为皮带机出渣系统或螺旋输送机出渣系统。
所述的刀盘刀具系统上设有盘形滚刀;所述的主梁上还设有钢拱架安装器和锚杆钻机系统,主梁通过推进系统与支撑系统相连,支撑系统后部设有后支腿。
并联机器人支撑、可开挖任意断面隧道的柔臂掘进机的掘进方法,包括以下步骤:①掘进机工作时,支撑系统撑紧洞壁,后支腿缩回,推进系统伸出,由主梁带动前支撑、护盾结构、并联机器人臂、驱动系统、刀盘刀具系统向前掘进;②安装有盘形滚刀的刀盘在驱动系统的作用下回转运动,完成隧道开挖;③开挖的岩渣由皮带机出渣系统输出洞外;③推进系统完成一个隧道开挖的行程推进后,后支腿伸出抵紧洞底,支撑起主机,支撑系统缩回,在推进系统的作用下向前移动完成换步工序。
所述步骤②刀盘在驱动系统的作用下完成隧道开挖时,通过并联机器人臂调整刀盘的位置。
柔臂掘进机(Robot-TBM)是指掘进机刀盘与支撑大梁之间采用若干组液压油缸组弹性连接,刀盘与大梁之间的距离随着开挖位置的变化而变化。本实用新型可以获得任意断面形状的开挖作业:并联机器人臂利用液压油缸组组成的桁架结构,可以大幅度大范围的调整刀盘开挖范围,从而获得需要的任意断面。配合滚刀刀盘可以实现硬岩岩石隧道的开挖成型:拓宽了掘进机的应用范围,尤其是实现了在硬岩地层的异形断面开挖,形成了一种新型柔性并联机器人臂任意断面掘进机。
本实用新型通过控制并联机器人臂的位姿,实现结构灵活、断面转换范围大,真正实现岩石隧道任意断面的开挖;通过始终位于洞底的新型出渣系统包含任何形式的刮渣和吸渣系统,将开挖产生的渣土运输出去,快捷方便。
附图说明
图1是本实用新型实施例1结构示意图;
图2是本实用新型实施例1刀盘顶部开挖状态结构示意图;
图3是本实用新型实施例1刀盘底部开挖状态结构示意图;
图4是图1的A-A视图;
图5是图2的E-E视图;
图6是图3的F-F视图;
图7是实施例2液压油缸组为四组、每组两个液压油缸时图1的B-B视图;
图8是实施例2液压油缸组为四组、每组两个液压油缸时图1的C-C视图;
图9是实施例3液压油缸组为三组,每组两个液压油缸时的前部放大结构示意图;
图10是实施例3液压油缸组为三组,每组两个液压油缸时的驱动系统、并联机器人臂与前支撑的立体结构关系简图;
图11是实施例4液压油缸组为三组,每组一个液压油缸时的驱动系统、并联机器人臂与前支撑的立体结构关系简图。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
实施例1
如图1-6所示,一种并联机器人支撑、可开挖任意断面隧道的柔臂掘进机,包括刀盘刀具系统1、驱动系统2、前支撑6和主梁9,前支撑6设置在主梁9上,所述的驱动系统2前部与刀盘刀具系统1连接,驱动系统2通过并联机器人臂14与前支撑6柔性连接。刀盘刀具系统1与驱动系统2螺栓连接,驱动系统2由轴承、密封、电机、减速机及钢结构件组成。
所述的并联机器人臂14为并联结构形式的液压油缸组5,液压油缸组5前端与驱动系统2铰接连接、后端与前支撑6铰接连接。本实用新型液压油缸组5可以采用液压驱动系统或电液伺服系统进行驱动;同时液压油缸组5也可以采用直线气缸或旋转气动电动机,并采用气动驱动系统。
所述液压油缸组5前端通过球铰座3、平铰座或万向接头与驱动系统2铰接连接,后端通过球铰座3、平铰座或万向接头与前支撑6铰接连接。
所述的出渣系统13为皮带机出渣系统或螺旋输送机出渣系统。出渣系统13为皮带机出渣系统,出渣系统13与设置在出渣系统尾部皮带机16相接,出渣系统13将刀盘刀具系统1下方的渣土输送至皮带机16上,再由皮带机16输送至掘进机外侧。
所述的刀盘刀具系统1上设有盘形滚刀15;所述的主梁9上还设有钢拱架安装器7和锚杆钻机系统8,主梁9通过推进系统10与支撑系统11相连,支撑系统11后部设有后支腿12。本实用新型隧道中间开挖时的刀盘位置如图1和图4所示,隧道顶部开挖时的刀盘位置如图2和图3所示;隧道底部开挖时的刀盘位置如图3和图6所示;
一种并联机器人支撑、可开挖任意断面隧道的柔臂掘进机的掘进方法,包括以下步骤:①掘进机工作时,支撑系统11撑紧洞壁,后支腿12缩回,推进系统10伸出,由主梁9带动前支撑6、护盾结构4、并联机器人臂14、驱动系统2、刀盘刀具系统1向前掘进;②安装有盘形滚刀15的刀盘刀具系统1在驱动系统2的作用下回转运动,完成隧道开挖;③开挖的岩渣由皮带机出渣系统13输出洞外;③推进系统10完成一个隧道开挖的行程推进后,后支腿12伸出抵紧洞底,支撑起主机,支撑系统11缩回,在推进系统10的作用下向前移动完成换步工序。
所述步骤②刀盘刀具系统1在驱动系统2的作用下完成隧道开挖时,通过并联机器人臂14调整刀盘刀具系统1的位置。
实施例2
一种并联机器人支撑、可开挖任意断面隧道的柔臂掘进机,所述的液压油缸组有四组,每组有两个液压油缸。四组液压油缸组的两端分别在驱动系统2和前支撑6上均匀分布,刀盘刀具系统1转动时,每组的两个液压油缸可相互支撑,抵消一部分刀盘切削扭矩。本实用新型每组的液压油缸数大于等于两个时,刀盘刀具系统1转动,每组大于等于两个的液压油缸可相互支撑,抵消一部分刀盘切削扭矩。液压油缸组数量为四组,每组两个时,共八个液压油缸,依次为一号油缸、二号油缸、……八号油缸,球铰座3在驱动系统2和前支撑6上的布置位置分别如图7和图8所示,图中,A1和B1分别表示一号油缸的两端,A2和B2分别表示二号油缸的两端,……A8和B8分别表示八号油缸的两端。其它结构同实施例1。
实施例3
一种并联机器人支撑、可开挖任意断面隧道的柔臂掘进机,所述的液压油缸组有三组,每组有两个液压油缸。三组液压油缸组的两端分别在驱动系统2和前支撑6上均匀分布,刀盘刀具系统1转动时,每组的两个液压油缸可相互支撑,抵消一部分刀盘切削扭矩。液压油缸组数量有三组,每组有两个,共6个液压油缸时,依次为一号油缸、二号油缸、……六号油缸,其布置方式见图9和图10。实现并联机器人臂14在传递刀盘刀具系统1推力的同时能够抵抗刀盘刀具系统1的转矩,调整刀盘刀具系统1姿态,稳定刀盘刀具系统1,在并联机器人臂14的作用下,刀盘刀具系统1平面始终与开挖断面平行。其它结构同实施例1。
实施例4
一种并联机器人支撑、可开挖任意断面隧道的柔臂掘进机,所述的液压油缸组有三组,每组有一个液压油缸。三组液压油缸组的两端分别在驱动系统2和前支撑6上均匀分布,如图11所示,三组液压油缸组前端均匀分布在驱动系统2上、后端均匀分布在前支撑6上。其它结构同实施例1。