本发明涉及不锈钢管制造技术领域,具体领域为一种连续速度管柱及其制造工艺。
背景技术:
续油管在工业上名为挠性油管同样也可以称之为盘管。在第二次世界大战期间它就已经出现于工业应用中,自20世纪60年代逐渐引起石油工业的注意,迄今为止已有50多年的历史。将连续油管作为速度管柱下放到井中,充当生产管柱进行排水采气作业,是近几年才发展起来的新型技术。天然气井完井后,在最初开采时,储层的能量一般较大,气井自身的能量足以将天然气和从地层渗入到井筒的液态水举升到地面,随着开采的进行,井底的能量慢慢减少,加之地层的水不停地渗入井筒,而减小的地层能量已经不足以将天然气和水举升到地面,水在井筒中越积越多,形成所谓的积液,抑制了井底的压力,使得气井排水更加困难,如果不及时处理,气井就有报废的可能。目前,针对上述问题有很多的处理工艺,比如速度管柱、柱塞气举、泡沫排水、有管泵抽水、气举排水,以及积液严重时所采用的电潜泵排水等等工艺。
在气田开发方面来说,速度管柱是对井下流体起节流增速作用的小直径管柱,当地层流体在天然能量的驱动下进入速度管时,由于过流面积比常规生产油管小,基于变径管流体力学原理,使得较小过流截面上的流体速度有所增加。其具体操作方式为将直径较小的连续油管,按照设计长度,下入原生产管柱中,用专用设备悬挂在井口或井筒中,形成新的生产管柱;
现有速度管柱排水采气作业需将速度管柱长期放置在井内,经受腐蚀介质的侵蚀,常规速度管柱是普通低碳钢材质,腐蚀性能一般,难以进行长期连续服役,为此提出一种连续速度管柱及其制造工艺。
技术实现要素:
本发明的目的在于提供一种连续速度管柱及其制造工艺,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种连续速度管柱,包括钢柱和保护层;
所述保护层的原材料组成和相应重量份数为:石英60~70份、三氧化二硼5~10份、氧化钾5~10份、氧化镍1~5份、氧化钛1~5份、氧化锑2~4、钼酸钡2~4份。
优选的,一种连续速度管柱,所述保护层的原材料组成和相应重量份数为:石英63~67份、三氧化二硼6~8份、氧化钾6~8份、氧化镍2~4份、氧化钛2~4份、氧化锑2.5~3.5、钼酸钡2.5~3.5份。
优选的,一种连续速度管柱,所述保护层的原材料组成和相应重量份数为:石英65份、三氧化二硼7份、氧化钾7份、氧化镍3份、氧化钛3份、氧化锑3、钼酸钡3份。
一种连续速度管柱的制造工艺,其制造工艺包括如下步骤:
步骤1:钢柱穿孔
通过穿孔机将钢柱进行穿孔,制备成毛管;
步骤2:轧管
将步骤1中制备的毛管内穿入长芯棒,通过多台按序布置的轧机对毛管进行轧制,制备出荒管;
步骤3:定减径
将步骤2制备出的荒管通过定径机进行定减径处理,制备出成管备用;
步骤4:保护层制备
将石英、三氧化二硼、氧化钾、氧化镍、氧化钛、氧化锑、钼酸钡投入至研磨机中进行研磨处理,然后将研磨的混合粉体过150目筛;
将过筛的研磨粉体加水进行机械搅拌,搅拌时间为1.5~2h;
将搅拌完毕的混合物放置在高温炉内进行烧结,烧结温度为1250~1400℃,烧结时间为1h,烧结完毕后进行急速冷却处理,制备出烧结块;
将烧结块球磨处理,过150目筛,然后将粉料喷涂至步骤3制备的成管内壁与外壁,高温烧结即制备出连续速度管柱。
本发明的有益效果是:一种连续速度管柱及其制造工艺,首先通过热轧钢管的工艺制备出无缝长钢管,然后将保护层高温烧结至成管上,通过保护层来大幅度提高钢管的防腐蚀性能,以石英作为保护层的主要原材料,石英化学性质稳定,为防腐蚀提供基本保障,三氧化二硼和氧化钾在整个保护层体系中起到助烧结作用,降低烧结所需的条件,氧化镍、氧化钛、氧化锑、钼酸钡在保护层体系中均起到密着作用,四者相互协同使主要成分石英颗粒之间更加密着,从而使保护层整体不受外界腐蚀性离子的侵蚀,达到增加连续速度管柱整体抗腐蚀性能的技术效果。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
步骤1:钢柱穿孔
通过穿孔机将钢柱进行穿孔,制备成毛管;
步骤2:轧管
将步骤1中制备的毛管内穿入长芯棒,通过多台按序布置的轧机对毛管进行轧制,制备出荒管;
步骤3:定减径
将步骤2制备出的荒管通过定径机进行定减径处理,制备出成管备用;
步骤4:保护层制备
将石英60份、三氧化二硼5份、氧化钾5份、氧化镍1份、氧化钛1份、氧化锑2份、钼酸钡2份投入至研磨机中进行研磨处理,然后将研磨的混合粉体过150目筛;
将过筛的研磨粉体加水进行机械搅拌,搅拌时间为1.5h;
将搅拌完毕的混合物放置在高温炉内进行烧结,烧结温度为1250℃,烧结时间为1h,烧结完毕后进行急速冷却处理,制备出烧结块;
将烧结块球磨处理,过150目筛,然后将粉料喷涂至步骤3制备的成管内壁与外壁,高温烧结即制备出连续速度管柱。
实施例2:
步骤1:钢柱穿孔
通过穿孔机将钢柱进行穿孔,制备成毛管;
步骤2:轧管
将步骤1中制备的毛管内穿入长芯棒,通过多台按序布置的轧机对毛管进行轧制,制备出荒管;
步骤3:定减径
将步骤2制备出的荒管通过定径机进行定减径处理,制备出成管备用;
步骤4:保护层制备
将石英63份、三氧化二硼6份、氧化钾6份、氧化镍2份、氧化钛2份、氧化锑2.5份、钼酸钡2.5份投入至研磨机中进行研磨处理,然后将研磨的混合粉体过150目筛;
将过筛的研磨粉体加水进行机械搅拌,搅拌时间为1.6h;
将搅拌完毕的混合物放置在高温炉内进行烧结,烧结温度为1280℃,烧结时间为1h,烧结完毕后进行急速冷却处理,制备出烧结块;
将烧结块球磨处理,过150目筛,然后将粉料喷涂至步骤3制备的成管内壁与外壁,高温烧结即制备出连续速度管柱。
实施例3:
步骤1:钢柱穿孔
通过穿孔机将钢柱进行穿孔,制备成毛管;
步骤2:轧管
将步骤1中制备的毛管内穿入长芯棒,通过多台按序布置的轧机对毛管进行轧制,制备出荒管;
步骤3:定减径
将步骤2制备出的荒管通过定径机进行定减径处理,制备出成管备用;
步骤4:保护层制备
将石英65份、三氧化二硼7份、氧化钾7份、氧化镍3份、氧化钛3份、氧化锑3份、钼酸钡3份投入至研磨机中进行研磨处理,然后将研磨的混合粉体过150目筛;
将过筛的研磨粉体加水进行机械搅拌,搅拌时间为1.7h;
将搅拌完毕的混合物放置在高温炉内进行烧结,烧结温度为1310℃,烧结时间为1h,烧结完毕后进行急速冷却处理,制备出烧结块;
将烧结块球磨处理,过150目筛,然后将粉料喷涂至步骤3制备的成管内壁与外壁,高温烧结即制备出连续速度管柱。
实施例4:
步骤1:钢柱穿孔
通过穿孔机将钢柱进行穿孔,制备成毛管;
步骤2:轧管
将步骤1中制备的毛管内穿入长芯棒,通过多台按序布置的轧机对毛管进行轧制,制备出荒管;
步骤3:定减径
将步骤2制备出的荒管通过定径机进行定减径处理,制备出成管备用;
步骤4:保护层制备
将石英67份、三氧化二硼8份、氧化钾8份、氧化镍4份、氧化钛4份、氧化锑3.5份、钼酸钡3.5份投入至研磨机中进行研磨处理,然后将研磨的混合粉体过150目筛;
将过筛的研磨粉体加水进行机械搅拌,搅拌时间为1.8h;
将搅拌完毕的混合物放置在高温炉内进行烧结,烧结温度为1350℃,烧结时间为1h,烧结完毕后进行急速冷却处理,制备出烧结块;
将烧结块球磨处理,过150目筛,然后将粉料喷涂至步骤3制备的成管内壁与外壁,高温烧结即制备出连续速度管柱。
实施例5:
步骤1:钢柱穿孔
通过穿孔机将钢柱进行穿孔,制备成毛管;
步骤2:轧管
将步骤1中制备的毛管内穿入长芯棒,通过多台按序布置的轧机对毛管进行轧制,制备出荒管;
步骤3:定减径
将步骤2制备出的荒管通过定径机进行定减径处理,制备出成管备用;
步骤4:保护层制备
将石英70份、三氧化二硼10份、氧化钾10份、氧化镍5份、氧化钛5份、氧化锑4份、钼酸钡4份投入至研磨机中进行研磨处理,然后将研磨的混合粉体过150目筛;
将过筛的研磨粉体加水进行机械搅拌,搅拌时间为2.0h;
将搅拌完毕的混合物放置在高温炉内进行烧结,烧结温度为1400℃,烧结时间为1h,烧结完毕后进行急速冷却处理,制备出烧结块;
将烧结块球磨处理,过150目筛,然后将粉料喷涂至步骤3制备的成管内壁与外壁,高温烧结即制备出连续速度管柱。
依据中华人民共和国标准gb/t4157-2006《金属在硫化氢环境中抗特殊形式环境开裂实验室试验》对实施例1-5制备连续速度管柱进行试验,加载方式采用静态拉伸法,对试样施加数值为535mpa屈服压力的拉伸应力,腐蚀溶液为标准中规定的a溶液(硫化氢饱和5%nacl+0.5%冰乙酸水溶液)。经过720小时的应力腐蚀实验,均未断裂;
将实施例1-5制备连续速度管柱和现有连续速度管柱放置在某油田气井内进行排水采气作业,连续服役三年后起出进行检测:实施例1-5制备连续速度管柱平均强度损失为6%,仍可继续使用,现有连续速度管柱在检测过程中已发现被腐蚀裂纹痕迹,使用激光共聚焦设备对壁厚腐蚀情况进行了测量,由测量结果该连续速度管柱已经不能满足继续服役的力学性能要求,需要更换。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。