一种适用超低渗透地层的Ψ型管多相保真取样装置

文档序号:25094266发布日期:2021-05-18 21:20阅读:70来源:国知局
一种适用超低渗透地层的Ψ型管多相保真取样装置
一种适用超低渗透地层的
ψ
型管多相保真取样装置
技术领域
1.本实用新型属于深地工程中的井下流体保真取样技术领域,更具体涉及一种适用超低渗透地层的ψ型管多相保真取样装置,它适用于基于低渗透地层尤其是超低渗透地层钻井多相取样的地层流体保真取样。


背景技术:

2.随着科技的进步,人们对地底的研究深度越来越高,为了准确的研究地底情况取得原位保真气液流体样品资料至关重要,石油、地热、co2地质封存、地下能源与废弃物地下储存、深部地质科研等工程面临复杂地质条件下的原位保真气液流体取样难的问题,迫切需要一种能对地层气液流体尤其是低渗透地层与超低渗透地层流体同时保真取样的技术,准确地了解井下气液流体性质与成分分析和研究井下流体状态的变化。因而对井下气液流体进行保真取样,具体研究气液流体物性是紧要目的,然而随着研究的进行,深度的提高使得气液流体的取样变的越来越困难,世界各国对井下流体取样技术都有深入研究,目前有各种各样的取样设备:bailer取样器、不连续间隔取样器、地下水取样泵及直接推进原位地下水取样用裸露过滤网型取样器、密闭过滤网型取样器、 waterloo取样器、u型管取样器等取样技术,这些取样器虽然能对井下流体进行取样,但都存在一些技术问题无法对地渗透地层尤其是超低渗透地层深部取样。
3.按油田的分类,我国把渗透率低于50md的储层称为低渗透油层,并近一步划分为三类:一般低渗透油藏(储层渗透率10

50md),特低渗透油藏(储层渗透率为1

10md),超低渗透油藏(储层渗透率0.1

1md)具有渗透率低、孔喉细小、束缚水高、渗流存在非达西渗流特征,其天然能量不足,地层压力下降慢,发明专利“井内分层气液两相流体保真取样装置”(cn 102108861 a)提供了一种基于井下气液两相取样的技术方法,其取样方法虽然能够达到保真取样的要求,但无法控制取样流速与压力对地层的扰动性大,液体样品在u型管内部易残留,同时取样装置的液体样品单次取样量大(15

20l),超低渗透地层的液体补充能力弱,造成取样周期长,取样时井下装置存在的液体残留物不仅减少了有效取样量又造成不同取样周期样品在装置内交叉接触互溶,减少了所取样品的代表性,因而无法有效对超低渗透地层进行多相(气、水、油等)保真取样,如何减小取样对低渗透层的影响,如何减少取样装置内残留液体样品,提供一种对超低渗透地层进行有效保真取样的装置是目前超低渗透地层流体保真取样的技术关键。


技术实现要素:

4.为了改进克服现有的气液两相取样装置的缺陷与技术难点,本实用新型的目的是在于提供一种适用超低渗透地层的ψ型管多相保真取样装置,结构简单,安装与操作便捷,管路易于清洗,维护简单,可在不同深度单井实现多相的分层取样,小扰动样品代表性强,适用范围广。
5.其技术构思是:在超低渗透地层的钻井中放置基于ψ型管的多相保真取样装置,
通过与ψ型管连接的地面控制系统与温控系统,控制取样时装置内压力、流速与温度,减少对超低渗透取样地层的扰动,维持整个过程中取样地层内的稳定性,并通过地面控制系统在ψ型管取样装置管路内制造气体与液体交替相间的段塞流,减少了液体样品在管路内的残留量,同时隔绝了液体样品避免不同取样周期内的液体样品的互相接触,ψ型管管壁涂覆疏液层可以有效提升段塞流的质量,亦有助于管路的清洗让装置能长期在井下工作,封隔器系统坐封的取样地层中偏低渗透地层连接了ψ型取样管与i型取样管分别在不同深度地层同时进行气体取样与液体取样,针对特低渗透地层的液体样品与气体样品均使用ψ型取样管进行取样,实现多相保真取样的目的。
6.为了实现上述目的,本实用新型采用以下技术方案:一种适用超低渗透地层的ψ型管多相保真取样装置,包括地面控制系统、封隔器系统、ψ型取样管、i型取样管、温控系统、自动多通阀门等模块部件,地面控制系统包括压力源、第一驱动管、流体减压阀、控制面板;压力源通过安装有流体减压的第一驱动管连接控制面板,封隔器系统包括第一封隔器、第二封隔器、第三封隔器、第四封隔器(等数字依次类推);
7.ψ型取样管包括一号ψ型取样管与二号ψ型取样管,由第一控制管路、第二控制管路、取样管路、进样管路、进样过滤器、上部单向阀、下部单向阀构成,一号ψ型取样管包括一号第一控制管路、一号第二控制管路、一号取样管路、一号进样管路、一号进样过滤器、一号上部单向阀、一号下部单向阀,二号ψ型取样管包括二号第一控制管路、二号第二控制管路、二号取样管路、二号进样管路、二号进样过滤器、二号上部单向阀、二号下部单向阀;
8.一号第一控制管路、一号第二控制管路、一号取样管路上端与地面控制系统连接,下端与一号进样管路连接,一号进样管路连接自动多通阀门后穿过封隔器系统与取样地层中的一号进样过滤器连接,一号上部单向阀安装于一号进样管路上端,一号下部单向阀安装于一号第二控制管路下端;二号第一控制管路、二号第二控制管路、二号取样管路上端与地面控制系统连接,下端与二号进样管路连接,二号进样管路连接自动多通阀门后穿过封隔器系统与取样地层中的二号进样过滤器连接,二号上部单向阀安装于二号进样管路上端,二号下部单向阀安装于二号第二控制管路下端;
9.所述i型取样管包括气体控制及取样管与气体进样过滤器,气体控制及取样管上端连接地面控制系统,其下端连接自动多通阀门后穿过封隔器系统与取样地层中的气体进样过滤器连通;
10.所述温控系统包括保温层、分布式温控元件、液体温度传感器、气体温度传感器,保温层包裹ψ型取样管中的一号第一控制管路、一号第二控制管路、一号取样管路、二号第一控制管路、二号第二控制管路、二号取样管路与i型取样管中的气体控制及取样管,分布式温控元件与一号取样管路、二号取样管路、气体控制及取样管相连,液体温度传感器与一号取样管路相连,气体温度传感器与二号取样管路、气体控制及取样管相连。
11.进一步的,所述控制面板为地面控制系统控制井下取样压力流速的设施集成依次安装各驱动管路、流体/气体取样管路、控制阀门与压力表,驱动管路包括第一驱动管、第一气体驱动管、第二气体驱动管、第三气体驱动管、第四气体驱动管、一号第一控制管路驱动管、一号第二控制管路驱动管、一号取样管路驱动管、二号第一控制管路驱动管、二号第二控制管路驱动管、二号取样管路驱动管;
12.流体/气体取样管路包括第一流体取样管、第二流体取样管、气体取样管;
13.控制阀门包括第一气体驱动管阀门、第二气体驱动管阀门、第三气体驱动管阀门、第一流体取样管阀门、第二流体取样管阀门、气体取样管阀门、一号第一控制管路驱动管阀门、一号第二控制管路驱动管阀门、一号取样管路驱动管阀门、二号第一控制管路驱动管阀门、二号第二控制管路驱动管阀门、二号取样管路驱动管阀门;
14.压力表包括压力源压力表、一号第一控制管路压力表、一号第二控制管路压力表、一号取样管路驱动管压力表、第四气体驱动管压力表、二号第一控制管路压力表、二号第二控制管路压力表、二号取样管路驱动管压力表;
15.压力源与安装有流体减压阀、压力源压力表的第一驱动管连接,第一驱动管分别连接安装有第一气体驱动管阀门的第一气体驱动管与安装有第三气体驱动管阀门的第三气体驱动管;
16.第一气体驱动管分别与安装有第二气体驱动管阀门的第二气体驱动管、安装有第一流体取样管阀门的第一流体取样管连接;
17.第二气体驱动管分别连接安装有一号第一控制管路驱动管阀门、一号第一控制管路压力表的一号第一控制管路驱动管,安装有二号第一控制管路驱动管阀门、二号第一控制管路压力表的二号第一控制管路驱动管,安装有一号第二控制管路驱动管阀门、一号第二控制管路压力表的一号第二控制管路驱动管,安装有二号第二控制管路驱动管阀门、二号第二控制管路压力表的二号第二控制管路驱动管;
18.一号第一控制管路驱动管与ψ型取样管的一号第一控制管路连接,二号第一控制管路驱动管与ψ型取样管的二号第一控制管路连接,一号第二控制管路驱动管与ψ型取样管的一号第二控制管路连接,二号第二控制管路驱动管与ψ型取样管的二号第二控制管路连接;
19.第一流体取样管分别连接安装有第二流体取样管阀门的第二流体取样管,安装有一号取样管路驱动管阀门、一号取样管路驱动管压力表的一号取样管路驱动管,安装有二号取样管路驱动管阀门、二号取样管路驱动管压力表的二号取样管路驱动管;
20.第二流体取样管与气体取样容器/液体取样容器连接,一号取样管路驱动管与ψ型取样管中的一号取样管路连接,二号取样管路驱动管与ψ型取样管中的二号取样管路连接;
21.第三气体驱动管分别连接安装有气体取样管阀门的气体取样管以及安装有第四气体驱动管压力表的第四气体驱动管,气体取样管连接气体取样容器,第四气体驱动管连接i型取样管中的气体控制及取样管。
22.进一步的,所述一号进样管路包括通过自动多通阀门并联的第一层一号进样管路、第二层一号进样管路、第三层一号进样管路,一号进样过滤器包括第一层一号进样过滤器、第二层一号进样过滤器、第三层一号进样过滤器;
23.二号进样管路包括通过自动多通阀门并联的第一层二号进样管路、第二层二号进样管路、第三层二号进样管路,二号进样过滤器包括第一层二号进样过滤器、第二层二号进样过滤器、第三层二号进样过滤器;
24.第一层一号进样管路上端连接自动多通阀门,下端穿过第一封隔器与第一层一号进样过滤器连通;第二层一号进样管路上端连接自动多通阀门,下端穿过第二封隔器与第二层一号进样过滤器连通;第三层一号进样管路上端连接自动多通阀门,下端穿过第三封
隔器与第三层一号进样过滤器连通;
25.第一层二号进样管路上端连接自动多通阀门,下端穿过第一封隔器与第一层二号进样过滤器连通;第二层二号进样管路上端连接自动多通阀门,下端穿过第一封隔器、第二封隔器与第二层二号进样过滤器连通;第三层二号进样管路上端连接自动多通阀门,下端穿过第一封隔器、第二封隔器、第三封隔器与第三层二号进样过滤器连通。
26.进一步的,所述气体控制及取样管包括通过自动多通阀门并联的第一层气体控制及取样管、第二层气体控制及取样管、第三层气体控制及取样管,气体进样过滤器包括第一层气体进样过滤器、第二层气体进样过滤器、第三层气体进样过滤器;其中,第一层气体控制及取样管上端连接自动多通阀门,下端穿过第一封隔器与第一层气体进样过滤器连通;第二层气体控制及取样管上端连接自动多通阀门,下端穿过第一封隔器、第二封隔器与第二层气体进样过滤器连通;第三层气体控制及取样管上端连接自动多通阀门,下端穿过第一封隔器、第二封隔器、第三封隔器与第三层气体进样过滤器连通。
27.在上述技术方案中,地面控制系统由压力源、第一驱动管、流体减压阀与控制面板组成;控制面板可以有效的控制实用新型装置在取样过程中样品的压力、流速、取样体积,压力源连接安装有流体减压阀的第一驱动管与控制面板连接,控制面板取样端与取样设备气体取样容器(如金属、塑料取样瓶等)、液体取样容器(如取气袋、取气瓶等)连接;压力源为混合驱动力压力源,驱动流体选择高压的低密度惰性类气体(如n2、ar、 kr等)与液体(取气时使用加压的纯净水)。流体减压阀根据钻井取样深度与取样要求来控制压力源提供的最大输出压力值(0

100mpa),本实用新型装置取样时驱动动力使用高压的低密度惰性类气体与液体优点是:被取样流体取样时与驱动流体(低密度惰性类气体/ 液体)在同一装置内受到直接影响且不会互溶改变物性,方便形成段塞流;同时ψ型取样管中取样流体与驱动流体两种不互溶流体通过地面控制系统两者比例可以任意调节,取样时可以取ψ型取样管中任意量样品(如ψ型取样管全段样品、1/2体积样品、1/3体积样品等)取样驱动效果良好,场地适应性强;本实用新型装置体积适中可运用于各种低渗透地层钻井取样,无需使用特别电源和动力,也可保证取样工作的正常进行;取样深度影响低,在本实用新型装置内高压驱动流体的有效工作深度高、操作简单、压力源配合地面控制系统效果良好,驱动流体的压力易于控制。
28.在上述技术方案中,液体取样容器、气体取样容器为额定容量的耐压容器,可以准确的控制取样过程中实用新型装置内高压驱动流体的排放量,确保取样地层内流体样品 (气体或液体与取样使用的ψ型取样管有关)取样量达到取样设计时的合理要求不会对低渗透地层造成扰动同时避免地层内样品补充速度与其他因素对地层环境造成影响,确保取样的正常进行,额定容器内收集的排放驱动流体可依托加压设备(如加压泵)重新脉冲注入到取样地层内,重复使用驱动流体;压力源压力表作用为监测压力源的出口释放的高压驱动流体压力,一号第一控制管路驱动管压力表的作用为监测注入一号ψ型取样管的一号第一控制管路内的高压驱动流体压力,一号第二控制管路驱动管压力表的作用为监测注入一号ψ型取样管的一号第二控制管路内的高压驱动流体压力,一号取样管路驱动管压力表的作用为监测一号ψ型取样管的一号取样管路出口端压力,第四气体驱动管压力表的作用为监测注入到i型取样管内高压驱动流体与气体取样时通过i型取样管排出的取样地层内气体压力,二号第一控制管路驱动管压力表的作用为监测注入二号ψ型取样管的二号第一控
制管路内的高压驱动流体压力,二号第二控制管路驱动管压力表的作用为监测注入二号ψ型取样管的二号第二控制管路内的高压驱动流体压力,二号取样管路驱动管压力表的作用为监测二号ψ型取样管的二号取样管路出口端压力;地面控制系统可以精确控制取样过程中ψ型取样管与i型取样管管内流体的流速、压力与井下流体样品进样体积;不取样时取样装置内流体压力略高于进样层位的地层压力(不超过0.5mpa,取样时通过地面控制系统对取样装置内流体泄压使地层流体样品进入取样装置内,可避免样品提前进入取样装置内),保证稳定的进样压力与精确的控制取样体积,取样过程中,地面控制系统与ψ型取样管、i型取样管相连接组成完整取样装置系统;取样装置外部包裹保温层或者温控系统,地面控制系统控制取样系统内流体的压力、流速,温控系统控制取样系统内的温度。地面控制系统与温控系统共同确保取样的稳定性,确保样品温压条件与原始地层近似,使取样过程中样本不会因为压力、温度的突然变化而导致的流体相变或者流体中溶解物的离析/解吸等变化而造成样品性质的变化,保证取样顺利进行与所取样品的真实代表性,地面控制系统中各管路、阀门、压力表型号选取条件较井下结构较宽松,通常使用的耐腐蚀材料产品均可在选择范围内。
29.在上述技术方案中,封隔器系统包括并联在井中、上下分布放置深度依次加深的第一封隔器、第二封隔器、第三封隔器、第四封隔器,根据使用的实际需要放置在井下指定深度坐封,封隔器系统预留有ψ型取样管中一号进样管路、二号进样管路与气体控制及取样管孔位,使用时让管路先穿插过封隔器后再坐封,其功能在于封隔指定深度的地层流体形成相对密封的地层,防止层间串水。浅层、中层地层可以采用与水膨胀式封隔器与气体膨胀式封隔器等;深层地层时,可选择液压式封隔器也可采用石油地矿部门的标准封隔器,根据取样层位需要的不同设置所需封隔器的数量,以在不同的井下深度的低渗透地层中分层的同时进行多相流体保真取样,亦可进行井下指定的单一低渗透地层的保真取样,本实用新型在设计为气液油等多相取样但举例时仅阐述气液两相取样。
30.ψ型取样管由第一控制管路、第二控制管路、取样管路、进样管路、进样过滤器、上部单向阀、下部单向阀构成,第一控制管路包括一号第一控制管路、二号第一控制管路,第二控制管路包括一号第二控制管路、二号第二控制管路,取样管路包括一号取样管路、二号取样管路,进样管路包括一号进样管路、二号进样管路,进样过滤器包括一号进样过滤器、二号进样过滤器,上部单向阀包括一号上部单向阀、二号上部单向阀,下部单向阀包括一号下部单向阀、二号下部单向阀;ψ型取样管包括一号ψ型取样管、二号ψ型取样管,一号ψ型取样管包括一号第一控制管路、一号第二控制管路、一号取样管路、一号进样管路、一号进样过滤器、一号上部单向阀、一号下部单向阀,二号ψ型取样管包括二号第一控制管路、二号第二控制管路、二号取样管路、二号进样管路、二号进样过滤器、二号上部单向阀、二号下部单向阀;一号第一控制管路、一号第二控制管路、一号取样管路上端与地面控制系统连接,下端通过四通与一号进样管路连接,一号第二控制管路在下部四通连接处安装一号下部单向阀,二号第一控制管路、二号第二控制管路、二号取样管路上端与地面控制系统连接,下端通过四通与二号进样管路连接,二号第二控制管路在下部四通连接处安装二号下部单向阀,一号下部单向阀与二号下部单向阀的流通方向为从上往下,仅能让一号第二控制管路与二号第二控制管路中的高压驱动流体注入到ψ型取样管装置内(一般情况下进入一号ψ型取样管内的高压驱动流体为高压惰性类驱动气体,进入二号ψ型取样管内的高压
驱动流体为高压纯净水等液体),一号进样管路在上部四通连接处安装一号上部单向阀,二号进样管路在上部四通连接处安装二号上部单向阀,一号上部单向阀与二号上部单向阀的流通方向仅为从下往上,取样地层中的样品只能从一号进样管路与二号进样管路单向进入,防止ψ型取样管中的样品窜流到封隔器系统坐封的低渗透取样地层中影响样品品质;一号进样管路还包括通过自动多通阀门并联的第一层一号进样管路、第二层一号进样管路、第三层一号进样管路,二号进样管路还包括通过自动多通阀门并联的第一层二号进样管路、第二层二号进样管路、第三层二号进样管路,一号进样过滤器包括第一层一号进样过滤器、第二层一号进样过滤器、第三层一号进样过滤器,二号进样过滤器包括第一层二号进样过滤器、第二层二号进样过滤器、第三层二号进样过滤器,一号进样过滤器与二号进样过滤器主要作用为过滤通过一号进样管路与二号进样管路进入ψ型取样管中取样地层内样品的杂质,防止ψ型取样管管路堵塞,一号进样管路连接自动多通阀门后穿越封隔器系统与一号进样过滤器连接;第一层一号进样管路穿过第一封隔器与第一层一号进样过滤器连接,第二层一号进样管路穿过第一封隔器第二封隔器与第二层一号进样过滤器连接,第三层一号进样管路穿过第一封隔器、第二封隔器、第三封隔器与第三层进样过滤器连接,通过一号进样管路与一号进样过滤器使得一号ψ型取样管与封隔器系统坐封的取样地层导通;在不取样时ψ型取样管内填充有压力源内的高压驱动流体(一号ψ型取样管内为高压惰性类气体,二号ψ型取样管内为液体),ψ型取样管中上部单向阀与下部单向阀与地面控制系统配合使用能使样品在ψ型取样管内进样管路、取样管路内流动,高压驱动流体在ψ型取样管内第一控制管路、第二控制管路、取样管路流动,多相流取样时通过地面控制系统让ψ型取样管中取样管路内填充的高压驱动流体泄压,使取样地层内的流体通过进样过滤器与进样管路进入到ψ型取样管中,在泄压进样的同时让一号控制管路、二号控制管路分别注入压力源内的高压驱动流体在ψ型取样管内形成段塞流,一号上部单向阀、一号下部单向阀的配合使用能使高压驱动流体(惰性类气体如n2、ar 等)只在一号第一控制管路、一号第二控制管路、一号取样管路内流动,液体样品只在一号进样管路、一号取样管路内流动,二号上部单向阀、二号下部单向阀的配合使用能使高压驱动流体(高压液态驱动流体)只在二号第一控制管路、二号第二控制管路、二号取样管路内流动,气体样品只在二号进样管路、二号取样管路内流动,同时配合地面控制系统的控制能让液体样品通过一号进样管路进入一号取样管路内,高压驱动流体(惰性类气体如n2、ar等)通过一号第二控制管路、一号第一控制管路交替进入到ψ型取样管一号第二控制管路、一号第一控制管路、一号取样管路内,让气体样品通过二号进样管路进入二号取样管路内,高压驱动流体(高压液态驱动流体)通过二号第二控制管路、二号第一控制管路交替进入到ψ型取样管二号第二控制管路、二号第一控制管路、二号取样管路内,在一号ψ型取样管与二号ψ型取样管内形成气体与液体相间的气液段塞流,有效避免所需样品间的互相接触,最终通过地面控制系统让一号ψ型取样管段塞流样品通过一号取样管路到达地面,让二号ψ型取样管段塞流样品通过二号取样管路到达地面;ψ型取样管管壁涂覆疏液层避免液体样品与液体驱动流体在管壁附着造成样品交叉互溶,同时亦有助于段塞流的形成,取样时取段塞流指定段样品(如有10滴样品,5

9 滴样品与地层压力与高压驱动流体压力有关),如果低渗透地层内的样品体积过小,可以在一号第一控制管路、二号第一控制管路四通连接处安装单向阀,更加易于一号取样管路、二号取样管路收集流体样品,进一步减少样品取样量同时亦减少驱动流动的消耗
量,避免因低渗透地层液体补充慢造成取样周期过长;ψ型取样管材料选择耐腐蚀的 316l不锈钢材料,在极端腐蚀条件可以换成哈氏合金材料。
31.ψ型取样管取样量范围可以大幅度调整,通过地面控制系统的调整可以取管内全段样品、取样管1/2体积样品、取样管1/3体积样品等取样量范围样品,取样时气体/液体样品从取样层位通过进样管路进入到取样管路中,地面控制系统调整压力源内的高压驱动流体交替注入第一控制管路、第二控制管路中制造段塞流,样品进入到ψ型取样管量与取样量调整幅度大,在低渗透地层使用时ψ型取样管低取样量可以实现地层的低扰动取样。
32.在上述技术方案中,i型取样管由上下连通的气体控制及取样管与气体进样过滤器组成,气体控制及取样管包括通过自动多通阀门并联的第一层气体控制及取样管、第二层气体控制及取样管、第三层气体控制及取样管,气体进样过滤器包括第一层气体进样过滤器、第二层气体进样过滤器、第三层气体进样过滤器,气体进样过滤器的主要作用为过滤取样地层中的固体悬浮物与颗粒杂质防止管路堵塞,气体控制及取样管上端连接地面控制系统中的控制面板,下端连接自动多通阀门后穿越封隔器系统与气体进样过滤器连接,其中第一层气体控制及取样管穿越第一封隔器与第一层气体进样过滤器连接,第二层气体控制及取样管穿越第一封隔器、第二封隔器与第二层气体进样过滤器连接,第三层气体控制及取样管穿越第一封隔器、第二封隔器、第三封隔器与第三层气体进样过滤器连接;i型取样管的作用主要为:对取样地层液气体样品直接取样并控制地层压力;气体样品取样时,直接操控地面控制系统通过i型取样管对封隔器系统坐封的取样地层直接泄压取样,在一般的低渗透地层中使用ψ+i型组合取样管时,若取样地层中的气体样品过少,可向取样地层注入高压惰性类气体,增容并稀释地层内的气体样品后直接降压在地面进行取样,此外注入的高压惰性类气体亦可提高地层压力(提升值约为 0.1~10%地层压力)并加速液体样品流通到ψ型取样管的进样速度,减少取样时间,待液体取样完毕后,释放取样地层中通过的注入的高压惰性类气体降压取样,取样地层中的气体样品以高压惰性类气体为载体一起通过i型取样管到达地面。
33.在上述技术方案中,温控系统放置于井下包裹着ψ型取样管与i型取样管,包括保温层、分布式温控元件、液体温度传感器、气体温度传感器,保温层包裹ψ型取样管中的一号第一控制管路、二号第一控制管路、一号第二控制管路、二号第二控制管路、一号取样管路与i型取样管中的气体控制及取样管,分布式温控元件与一号取样管路、二号取样管路、气体控制及取样管相连(紧贴),液体温度传感器与一号取样管路相连(紧贴),气体温度传感器与二号取样管路、气体控制及取样管相连(紧贴)。保温层采用保温棉等具有保温隔热功能材料,温控元件使用电阻丝与电加热带等,温度传感器为点式温度传感器或分布式传感器;通过温控系统保障取样装置管路内的温度与原始取样地层的温度保持一致,或使取样装置内温度保持为预定的温度。
34.在上述技术方案中,自动多通阀门为电路控制的多联通阀门,产品为标准工业产品,例如:自动六通阀、自动八通阀等阀门,其主要作用为控制不同的进样管路(如一号进样管路、二号进样管路、第一层一号进样管路、第一层二号进样管路、第二层一号进样管路、第二层二号进样管路、第三层一号进样管路、第三层二号进样管路)与不同的气体控制及取样管路(如气控制取样管、第一层气体控制及取样管、第二层气体控制及取样管、第三层气体控制及取样管)对接;自动控制多通阀门的控制电缆采用石油、天然气工业用的电缆,自动
控制多通阀门、进样管路、气体控制及取样管共同控制进入取样系统样品的层位和气液流体种类,既可全层位同时取样,亦可进行对指定层位进行取样;同时减少了取样装置以上管路数量。
35.外部防护:若实用新型设备需要保护装置,尤其是本实用新型设备需要安装于水平井水平段时,可在整个实用新型装置外设置铠甲层,保护内部元件和保温层并起固定作用;铠甲根据具体的井下环境可采用金属管、塑料、橡胶、内嵌钢丝网的塑料复合层等材料制作,或者为本实用新型装置定制井下托筒安装各零部件,待各零部件在地面安装在托筒内后与托筒一起下井,托筒的具体使用材质根据井下情况决定。
36.通过以上技术措施与连接方式,通过地面控制系统在取样时控制取样装置内的压力与流速条件并制造段塞流取样,通过封隔器系统封隔井下不同深度的取样地层,防止取样时流体层间窜流干扰,通过ψ型取样管内形成不互溶界面的段塞流进行井下流体气液取样,通过i型取样管进行井下气体取样,通过温控系统对井下取样装置的温度进行控制,配合地面控制系统的压力控制一起实现取样过程的温压控制,避免样品在取样过程中因温度与压力的突然变化造成样品发生离析,实现保真取样;以上采取的技术措施尤其是本实用新型提出的通过ψ型取样管在取样时制造气液相间的段塞流样品按需求进行气液取样,在达到保真取样目的同时提高了样品的有效取样量,同时避免了样品过少时造成的浪费,克服了超低渗透地层流体补充慢,扰动恢复能力弱,部分残留样品(液体与气体)会在取样装置内互溶影响取样品质等问题与技术难点,可以有效对深井多套地层尤其是低渗透地层进行保真取样,亦可对单一地层进行取样。
37.上述适用超低渗透地层的ψ型管多相保真取样装置的取样方法,其步骤是:
38.(1)取样前依次开启压力源、流体减压阀、第一气体驱动管阀门、一号第一控制管路驱动管阀门、一号取样管路驱动管阀门,压力源内的高压驱动流体(流体压力范围为 0

100mpa)经过第一驱动管、第一气体驱动管、第二气体驱动管、一号第一控制管路驱动管、一号第一控制管路,进入到一号ψ型取样管中驱动排出管内残留的液体样品,进行排空环节(持续约10分钟),排出的残留液体经过一号第一控制管路驱动管、第二流体取样管到达地面,收集部分不含残留液体的高压驱动流体到液体取样容器中,待残留样品排空完毕,且高压驱动流体填充满一号ψ型取样管后,依次关闭所有阀门结束排空环节;
39.(2)开启一号取样管路驱动管阀门,释放一号ψ型取样管的一号取样管路内高压驱动流体到液体取样容器中,开始进行进样环节,高压驱动流体释放约3s后关闭一号取样管路驱动管阀门,开启压力源、流体减压阀、第一气体驱动管阀门、一号第二控制管路驱动管阀门,开始段塞注气环节,向一号ψ型取样管的一号第二控制管路注入高压驱动流体(压力不低于取样压力,注入时间约为3s),关闭一号第二控制管路驱动管阀门,开启一号第一控制管路驱动管阀门,向一号第一控制管路注入高压驱动流体(压力不低于取样压力,注入时间约为3s),关闭一号第一控制管路驱动管阀门,开启一号取样管路驱动管阀门,再次释放一号取样管路内的高压驱动流体(释放时间约3s),关闭一号取样管路驱动管阀门,再次开启一号第二控制管路驱动阀门,向一号第二控制管路注入高压驱动流体(注入时间约为3s),开启一号第一控制管路驱动管阀门,向一号第一控制管路注入高压驱动流体,重复3至4次依次开启关闭一号取样管路驱动管阀门、一号第二控制管路驱动管阀门、一号第一控制管路驱动管阀门交替进行进样环节与段塞注气环节后,关闭所有阀门;
40.(3)开启压力源、流体减压阀、第三气体驱动管阀门,通过第四气体驱动管向i型取样管连通的封隔器系统坐封取样地层内注入高压驱动流体,进行加压环节,提高取样地层内的压力至最高取样压力,略比取样时地层平衡压力p高δp(控制|δp/p|<5%范围内,具体的取样压力与原始地层压力有关,在1~2000m深井中一般不超过0.5mpa),关闭第三气体驱动管阀门,重复步骤(2)再次进行ψ型取样管的一号取样管路内高压驱动流体的泄压,重复开启与关闭一号取样管路驱动管阀门、一号第二控制管路驱动管阀门、一号第一控制管路驱动管阀门交替进行进样环节与段塞注气环节后,待地层压力下降至最低取样压力(略比取样时地层平衡压力p低δp)后关闭一号第一控制管路驱动管阀门、一号第二控制管路驱动管阀门、一号取样管路驱动管阀门,再次开启压力源、流体减压阀、第三气体驱动管阀门,继续通过i型取样管向取样地层内注入高压驱动流体提升地层压力至最高取样压力,重复3

4次进样与加压环节后,直至一号取样管路驱动管压力表压力下降为0,关闭所有阀门结束进样;
41.(4)先开启第一流体取样管阀门、一号第一控制管路驱动管阀门,向一号ψ型取样管的一号第一控制管路排空注入加压后的液体取样容器中收集的高压驱动流体,关闭第一流体取样管阀门,开启压力源、流体减压阀、第一气体驱动管阀门、一号第一控制管路驱动管阀门、一号取样管路驱动管阀门,向一号ψ型取样管的一号第一控制管路注入压力源内的高压驱动流体,驱动一号ψ型取样管内的段塞流液体样品到达地面的液体取样容器中进行取样,根据p1v1=p2v2可以精确控制ψ型取样管取样量和段塞长度(或段塞比),液体样品取样完毕后先关闭一号取样管路驱动阀门待高压驱动流体填充满整个一号ψ型取样管后关闭其他所有阀门,锁住一号ψ型取样管中的高压驱动流体;
42.(5)开启气体取样管阀门,通过i型取样管释放取样地层中注入的高压驱动流体,取样地层中的气体样品以注入的高压驱动流体为载体一起到达地面中的气体取样容器中,关闭所有阀门结束取样。
43.针对超低渗透地层气体样品稀少的情况,使用两套ψ型取样管进行气液取样,其取样步骤如下:
44.(1)取样前依次开启压力源、流体减压阀、第一气体驱动管阀门、一号第一控制管路驱动管阀门、一号取样管路驱动管阀门,压力源内的高压驱动流体(流体压力范围为 0

100mpa,压力源为混合压力源,液体取样时驱动流体为气体,气体取样时注入为液体,此时释放气体驱动流体)经过第一驱动管、第一气体驱动管、第二气体驱动管、一号第一控制管路驱动管、一号第一控制管路,进入到一号ψ型取样管中驱动排出管内残留的液体样品,进行排空环节(持续约10分钟),排出的残留液体经过一号取样管路331、一号取样管路驱动管1133、第二流体取样管到达地面,待残留样品排空完毕,且高压驱动流体填充满一号ψ型取样管后,依次关闭所有阀门结束排空环节;
45.(2)开启一号取样管路驱动管阀门,释放一号ψ型取样管的一号取样管路内高压驱动流体到液体取样容器中,开始进行液体进样环节,高压驱动流体释放约3s后关闭一号取样管路驱动管阀门,开启压力源、流体减压阀、第一气体驱动管阀门、一号第二控制管路驱动管阀门,开始段塞注气环节,向一号ψ型取样管的一号第二控制管路注入高压驱动流体(压力不低于取样压力,注入时间约为3s),关闭一号第二控制管路驱动管阀门,开启一号第一控制管路驱动管阀门,向一号第一控制管路注入高压驱动流体(压力不低于取样压力,
注入时间约为3s),关闭一号第一控制管路驱动管阀门,开启一号取样管路驱动管阀门,再次释放一号取样管路内的高压驱动流体(释放时间约3s),关闭一号取样管路驱动管阀门,再次开启一号第二控制管路驱动阀门,向一号第二控制管路注入高压驱动流体(注入时间约为3s),关闭一号第二控制管路驱动管阀门,开启一号第一控制管路驱动管阀门,向一号第一控制管路注入高压驱动流体,重复7至8次依次开启关闭一号取样管路驱动管阀门、一号第二控制管路驱动管阀门、一号第一控制管路驱动管阀门交替进行液体进样环节与段塞注气环节直至一号取样管路驱动管压力表压力下降为0 后,关闭所有阀门,结束液体进样;
46.(3)开启压力源、流体减压阀、第一气体驱动管阀门、二号第一控制管路驱动管阀门、二号取样管路驱动管阀门,压力源内的高压驱动流体(流体压力范围为0

100mpa,压力源为混合压力源,液体取样时驱动流体为气体,气体取样时注入为液体,此时释放液体驱动流体)经过第一驱动管、第一气体驱动管、第二气体驱动管、二号第一控制管路驱动管、二号第一控制管路,进入到二号ψ型取样管中驱动排出管内残留的气体样品,进行排空环节(持续约10分钟),排出的残留液体经过二号取样管路321、二号取样管路驱动管1143第二流体取样管到达地面,待残留样品排空完毕,且高压驱动流体填充满二号ψ型取样管后,依次关闭所有阀门结束排空环节;
47.(4)开启二号取样管路驱动管阀门,释放二号ψ型取样管的二号取样管路内高压驱动流体到液体取样容器中,开始进行气体进样环节,高压驱动流体释放约3s后关闭二号取样管路驱动管阀门,开启压力源、流体减压阀、第一气体驱动管阀门、二号第二控制管路驱动管阀门,开始段塞注液环节,向二号ψ型取样管的二号第二控制管路注入高压驱动流体(压力不低于取样压力,注入时间约为3s),关闭二号第二控制管路驱动管阀门,开启二号第一控制管路驱动管阀门,向二号第一控制管路注入高压驱动流体(压力不低于取样压力,注入时间约为3s),关闭二号第一控制管路驱动管阀门,开启二号取样管路驱动管阀门,再次释放二号取样管路内的高压驱动流体(释放时间约3s),关闭二号取样管路驱动管阀门,再次开启二号第二控制管路驱动阀门,向二号第二控制管路注入高压驱动流体(注入时间约为3s),关闭二号第二控制管路驱动阀门,开启二号第一控制管路驱动管阀门,向二号第一控制管路注入高压驱动流体,关闭二号第一控制管路驱动管阀门,重复7至8次依次开启关闭二号取样管路驱动管阀门、二号第二控制管路驱动管阀门、二号第一控制管路驱动管阀门交替进行气体进样环节与段塞注液环节直至二号取样管路驱动管压力表压力下降为0后,关闭所有阀门结束气体进样;
48.(5)开启压力源、流体减压阀、第一气体驱动管阀门、一号第一控制管路驱动管阀门、一号取样管路驱动管阀门,向一号ψ型取样管的一号第一控制管路注入压力源内的高压驱动流体,驱动一号ψ型取样管内的段塞流中液体样品到达地面的液体取样容器中进行取样,液体样品取样完毕后先关闭一号取样管路驱动阀门待高压驱动流体填充满整个一号ψ型取样管后关闭其他所有阀门,锁住一号ψ型取样管中的高压驱动流体;
49.(6)开启压力源、流体减压阀、第一气体驱动管阀门、二号第一控制管路驱动管阀门、二号取样管路驱动管阀门,向二号ψ型取样管的二号第一控制管路注入压力源内的高压驱动流体,驱动二号ψ型取样管内的段塞流中气体样品到达地面的液体取样容器中进行取样,气体样品取样完毕后先关闭二号取样管路驱动阀门待高压驱动流体填充满整个二号ψ型取样管后关闭其他所有阀门,锁住二号ψ型取样管中的高压驱动流体结束取样。
50.区别于以往使用传统井底取样技术与使用u型管的气液两相取样技术,提供一种涉及使用ψ型取样管制造胶囊状气液相间段塞流的超低渗透地层的井下多相保真取样装置,与传统取样方式与u型管气液两相取样技术相比可以有效的在低渗透地层进行多相保真取样亦可当u型管使用,在功能上ψ型取样管可以完全替代u型取样管,根据井下地层渗透率的不同混合使用ψ型管与i型管,ψ型取样管管壁表面进行厌水亲水等亲和性改性,管内为气液相间或水油相间的段塞流(根据取样要求与驱动源决定)每次取样时产生不互溶界面,避免因每次取样的残留物在管内交叉互溶影响取样品质,根据地层情况决定液体样品取样量,尤其是在超低渗透地层因地下流体补充缓慢,通过增加ψ型取样管内段塞流中驱动流体的体积控制所取样品体积,可以大幅降低样品取样量,对于稀少样品无需借助其他介质稀释即可直接测量,采用实际测量设备的检测值,在超低渗透地层几乎可以无扰动取样。
51.本实用新型在传统深井取样技术的基础上,利用基于ψ型取样管的多相段塞流井下保真取样方法,区别于现有市场的取样(如井下定深取样、取样桶取样、电动泵取样bailer 取样器、密闭过滤网型取样器、waterloo取样器、u型管取样)能在井下对一定深度范围低渗透地层内的气、水油多相混合物进行一次保真取样与分析。
52.本实用新型与现有技术相比,具有以下优点和效果:
53.1.多相取样:能在不同深度单井实现井下多相取样如气、液、油等相态取样;
54.2.超低渗透地层取样:可以有效在超低渗透地层取样,不管是气体样品、液体样品油等单次取样多相流体所需样品量少,在地下流体补充速率慢的超低渗透地层,取样频率受地层流体补充速度制约情况小;
55.3.小扰动样品代表性强:该取样技术基于ψ型取样管原理,设计上能实现进样压力小扰动,取样全过程的压力过压状况,取样速率与取样量可控(流体单次样品量依靠段塞流中不互溶的驱动流体体积控制),可对地层多相流体实现小扰动取样,保证了样品的真实代表性同时的存在提高了保证流体样品的取样量;封隔器系统层间密封,能够保证地下流体取样的实时性和定深取样的代表性;
56.4.结构简单操作便捷:本实用新型对工作环境无特别要求(如不需要特别电源),安装与操作便捷,管路易于清洗,维护简单;部分驱动流体取样过程中可反复使用,长期监测的高频率取样与成本优于其他类型的定深取样设备;
57.5.适用范围广:适用于各种油气、地矿、水文等领域各种深度的气液流体保真取样与环境监测领域,可以实现示范与监测场地内的高频率与长期地保真取样。
58.a)地下能源资源开采领域(如:矿床地浸法开采,二氧化碳驱替增采煤层气 co2‑
ecbm、増采原油co2‑
eor、増采咸水co2‑
ewr、増采页岩气co2‑
esg,地下流体、溶质迁移与资源成矿机理及演化的科学与工程的系统监测与评估);
59.b)地下水动态监测领域(水坝、工厂、采油区等工程区域地下水污染评估、污染源追踪、微生物群落分析、污染土地流转评估等);
60.c)地下储库、地质调查等区域工程或质监站的长期监测维护,具有良好的应用前景和商业价值。
附图说明
61.图1为本实用新型适用超低渗透地层的ψ型管多相保真取样装置的主结构示意图;
62.图2为本实用新型适用超低渗透地层的ψ型管多相保真取样装置地面控制系统示意图;
63.图3为本实用新型适用超低渗透地层的ψ型管多相保真取样装置取样系统示意图;
64.图4为本实用新型适用超低渗透地层的ψ型管多相保真取样装置封隔器系统与进样系统结构示意图;
65.图5为本实用新型适用超低渗透地层的ψ型管多相保真取样装置温控系统结构示意图;
66.图6为本实用新型适用超低渗透地层的ψ型管多相保真取样装置ψ型取样管结构示意图;
67.图7为本实用新型使用原取样方法进行取样时的井下温度、压力随时间变化图;
68.图8为本实用新型适用超低渗透地层的ψ型管多相保真取样装置提供的ψ+i取样方法进行取样时的井下温度、压力随时间变化图;
69.图9为本实用新型适用超低渗透地层的ψ型管多相保真取样装置提供的ψ+ψ取样方法进行取样时的井下温度、压力随时间变化图。
70.附图标记:1

地面控制系统;2

封隔器系统;3

ψ型取样管;4

i型取样管;5

温控系统;
[0071]6‑
自动多通阀门;3a

一号ψ型取样管;3b

二号ψ型取样管;
[0072]
10

压力源;11

第一驱动管;12

流体减压阀;13

控制面板;p0‑
压力源压力表;
[0073]
p1‑
一号第一控制管路压力表;p2‑
一号第二控制管路压力表;p3‑
一号取样管路驱动
[0074]
管压力表;
[0075]
p4‑
第四气体驱动管压力表;p5‑
二号第一控制管路压力表;p6‑
二号第二控制管路压
[0076]
力表;p7‑
二号取样管路驱动管压力表;
[0077]
1101

第一气体驱动管;1102

第二气体驱动管;1103

第三气体驱动管;
[0078]
1104

第四气体驱动管;
[0079]
1121

第一流体取样管;1122

第二流体取样管;1123

气体取样管;
[0080]
1131

一号第一控制管路驱动管;1132

一号第二控制管路驱动管;
[0081]
1133

一号取样管路驱动管;
[0082]
1141

二号第一控制管路驱动管;1142

二号第二控制管路驱动管;
[0083]
1143

二号取样管路驱动管;
[0084]
1201

第一气体驱动管阀门;1202

第二气体驱动管阀门;1203

第三气体驱动管阀门;
[0085]
1221

第一流体取样管阀门;1222

第二流体取样管阀门;1223

气体取样管阀门
[0086]
1231

一号第一控制管路驱动管阀门;
[0087]
1232

一号第二控制管路驱动管阀门;1233

一号取样管路驱动管阀门;
[0088]
1241

二号第一控制管路驱动管阀门;
[0089]
1242

二号第二控制管路驱动管阀门;1243

二号取样管路驱动管阀门;
[0090]
1401

气体取样容器;1402

液体取样容器;
[0091]
21

第一封隔器;22

第二封隔器;23

第三封隔器;24

第四封隔器;
[0092]
31

第一控制管路;311

一号第一控制管路;312

二号第一控制管路;
[0093]
32

第二控制管路;321

一号第二控制管路;322

二号第二控制管路;
[0094]
33

取样管路;331

一号取样管路;332

二号取样管路;
[0095]
34

进样管路;341

一号进样管路;342

二号进样管路;
[0096]
35

进样过滤器;351

一号进样过滤器;352

二号进样过滤器;
[0097]
36

上部单向阀;361

一号上部单向阀;362

二号上部单向阀;
[0098]
37

下部单向阀;371

一号下部单向阀;372

二号下部单向阀;
[0099]
3411

第一层一号进样管路;3412

第二层一号进样管路;3413

第三层一号进样管路;
[0100]
3421

第一层二号进样管路;3422

第二层二号进样管路;3423

第三层二号进样管路;
[0101]
3511

第一层一号进样过滤器;3512

第二层一号进样过滤器;3513

第三层一号进样过滤器;
[0102]
3521

第一层二号进样过滤器;3522

第二层二号进样过滤器;3523

第三层二号进样过滤器;
[0103]
41

气体控制及取样管;42

气体进样过滤器;
[0104]
411

第一层气体控制及取样管;412

第二层气体控制及取样管;
[0105]
413

第三层气体控制及取样管;
[0106]
421

第一层气体进样过滤器;422

第二层气体进样过滤器;
[0107]
423

第三层气体进样过滤器;
[0108]
51

保温层;52

分布式温控元件;53

液体温度传感器;54

气体温度传感器。
[0109]
本实用新型中所有零部件都是从市场上购置。
具体实施方式
[0110]
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。
[0111]
实例1:下面结合图1

图6对实用新型装置进行具体说明:
[0112]
一种适用超低渗透地层的ψ型管多相保真取样装置,它包括地面控制系统1、封隔器系统2、ψ型取样管3、i型取样管4、温控系统5、自动多通阀门6,本实用新型与以往的u型管气液两相取样装置不同,在地面增加了地面控制系统1并将原装置的u型取样管更换为了ψ型取样管3,ψ型取样管3在功能上可以完全替代u型取样管;地面控制系统1中压力源10连接第一驱动管11与流体减压阀12后与控制面板13连接,控制面板13与气体取样容器1401、液体取样容器1402、ψ型取样管3、i型取样管4连接;封隔器系统2包括与井下并联的
第一封隔器21、第二封隔器22、第三封隔器23、第四封隔器24,ψ型取样管3包括一号ψ型取样管3a、二号ψ型取样管3b,ψ型取样管3中第一控制管路31、第二控制管路32、取样管路33、进样管路34通过四通互相连接,第一控制管路31包括一号第一控制管路311、二号第一控制管路312,第二控制管路32 包括一号第二控制管路321、二号第二控制管路322,取样管路33包括一号取样管路331、二号取样管路332,进样管路34包括一号进样管路341、二号进样管路342,第一控制管路31、第二控制管路32、取样管路33上端与地面控制系统1连接,第二控制管路32 上安装有下部单向阀37,下部单向阀37包括一号下部单向阀371、二号下部单向阀372,进样管路34上安装有上部单向阀36,上部单向阀36包括一号上部单向阀361、二号上部上部单向阀362,进样管路34连通自动多通阀门6后与封隔器系统2坐封的取样地层内的进样过滤器35连接,进样过滤器35包括一号进样过滤器351、二号进样过滤器352, i型取样管4中气体控制及取样管41上端连接地面控制系统1,下端连接自动多通阀门 6后与封隔器系统2坐封的取样地层内的气体进样过滤器42连接,温控系统5包裹井下的ψ型取样管3、i型取样管4;ψ型取样管3中进样管路34包括一号进样管路341、二号进样管路342,一号进样管路341还包括通过自动多通阀门6并联的第一层一号进样管路3411、第二层一号进样管路3412、第三层一号进样管路3413,二号进样管路342 还包括通过自动多通阀门6并联的第一层二号进样管路3421、第二层二号进样管路 3422、第三层二号进样管路3423;一号进样过滤器351包括第一层一号进样过滤器3511、第二层一号进样过滤器3512、第三层一号进样过滤器3513,二号进样过滤器352包括第一层二号进样过滤器3521、第二层二号进样过滤器3522、第三层二号进样过滤器 3523;一号进样管路341连接自动多通阀门6后与第一层一号进样管路3411、第二层一号进样管路3412、第三层一号进样管路3413连接,第一层一号进样管路3411穿过第一封隔器21与第一层一号进样过滤器3511连接,第二层一号进样管路3412穿过第一封隔器21、第二封隔器22与第二层一号进样过滤器3512连接,第三层一号进样管路3413 穿过第一封隔器21、第二封隔器22、第三封隔器23与第三层一号进样过滤器3513连接;二号进样管路342连接自动多通阀门6后与第一层二号进样管路3421、第二层二号进样管路3422、第三层二号进样管路3423连接,第一层二号进样管路3421穿过第一封隔器21与第一层二号进样过滤器3521连接,第二层二号进样管路3422穿过第一封隔器21、第二封隔器22与第二层二号进样过滤器3522连接,第三层二号进样管路3423 穿过第一封隔器21、第二封隔器22、第三封隔器23与第三层二号进样过滤器3523连接;i型取样管4中气体控制及取样管41还包括通过自动多通阀门6并联的第一层气体控制及取样管411、第二层气体控制及取样管412、第三层气体控制及取样管413,气体进样过滤器42包括第一层气体进样过滤器421、第二层气体进样过滤器422、第三层进样过滤器423,气体控制及取样管41连接自动多通阀门6后与第一层气体控制及取样管 411、第二层气体控制及取样管412、第三层气体控制及取样管413连接,第一层气体控制及取样管411穿过第一封隔器21与第一层气体进样过滤器421连接,第二层气体控制及取样管412穿过第一封隔器21、第二封隔器22与第二层气体进样过滤器422连接,第三层气体控制及取样管413穿过第一封隔器21、第二封隔器22、第三封隔器23与第三层气体进样过滤器423连接。
[0113]
根据图2所示,地面控制系统1包括压力源10、第一驱动管11、流体减压阀12、控制面板13、气体取样容器1401、液体取样容器1402,压力源10先与第一驱动管11、流体减压阀12连接,然后与控制面板13连接;在控制面板13中,第一驱动管11连接安装有第一气体驱动
管阀门1201的第一气体驱动管1101与安装有第三气体驱动阀门 1203的第三气体驱动管1103,第一气体驱动管1101右端连接第二气体驱动管1102与安装有第一流体取样管阀门1221的第一流体取样管1121,第二气体驱动管1102分别连接安装有一号第一控制管路驱动管阀门1231、一号第一控制管路驱动管压力表p1的一号第一控制管路驱动管1131,安装有一号第二控制管路驱动管阀门1232、一号第二控制管路驱动管压力表p2的一号第二控制管路驱动管1132,安装有二号第一控制管路驱动管阀门1241、二号第一控制管路驱动管压力表p5的二号第一控制管路驱动管1141,安装有二号第二控制管路驱动管阀门1242、二号第二控制管路驱动管压力表p6的二号第二控制管路驱动管1132;安装有第一流体取样管阀门1221的第一流体取样管1121 左端通过三通与第一气体驱动管1101、第二气体驱动管1102连接,右端通过四通分别连接第二流体取样管1122,安装有一号取样管路驱动管阀门1233、一号取样管路驱动管压力表p3的一号取样管路驱动管1233,安装有二号取样管路驱动管阀门1243、二号取样管路驱动管压力表p7的二号取样管路驱动管1143;一号第一控制管路驱动管1131、一号第二控制管路驱动管1132、一号取样管路驱动管1133右末端与一号ψ型管取液管 3a连接,二号第一控制管路驱动管1141、二号第二控制管路驱动管1142、二号取样管路驱动管1143右末端与二号ψ型管取液管3b连接;第二流体取样管1122左末端与液体取样容器1402/气体取样容器1401连接;安装有第三气体驱动管阀门1203的第三气体驱动管1103上端连接第一驱动管11与第一气体驱动管1101,第三气体驱动管1103左下端连接安装有气体取样管阀门1223的气体取样管1123,第三气体驱动管1103右下端连接有安装有第四气体驱动管压力表p4的第四气体驱动管1104,气体取样管1123左末端连接气体取样容器1401,第四气体驱动管1104右末端连接i型取样管4。
[0114]
根据图3所示,封隔器系统2包括井下并联第一封隔器21、第二封隔器22、第三封隔器23、第四封隔器24,它们分别安放在钻井不同深度的层位中最上层为第一封隔器21,第一封隔器21下层依次为第二封隔器22、第三封隔器23、第四封隔器24(等数字依次类推),封隔器系统2坐封的井下取样层位中还安放着一号进样过滤器351、二号进样过滤器352、气体进样过滤器37,其中第一层一号进样过滤器3511、第一层二号进样过滤器3521、第一层气体进样过滤器421安放在第一封隔器21、第二封隔器22坐封的取样层位中,第二层一号进样过滤器3512、第二层二号进样过滤器3522、第二层气体进样过滤器422安放在第二封隔器22、第三封隔器23坐封的取样层位中,第三层一号进样过滤器3513、第三层二号进样过滤器3523、第三层气体进样过滤器423安放在第三封隔器23、第四封隔24坐封的取样层位中。
[0115]
根据图1、图4所示,ψ型取样管3包括一号ψ型取样管3a、二号ψ型取样管3b,ψ型取样管3由第一控制管路31、第二控制管路32、取样管路33、进样管路34、进样过滤器35、上部单向阀36、下部单向阀37组成,其中一号ψ型取样管3a由一号第一控制管路311、一号第二控制管路321、一号取样管路331、一号进样管路341、一号进样过滤器351、一号上部单向阀361、一号下部单向阀371组成,二号ψ型取样管3b由二号第一控制管路312、二号第二控制管路322、二号取样管路332、二号进样管路342、二号进样过滤器352、二号上部单向阀362、二号下部单向阀372组成,一号第一控制管路311、一号第二控制管路321、一号取样管路331上端分别与地面控制系统1控制面板13内的一号第一控制管路驱动管1131、一号第二控制管路驱动管1132、一号取样管路驱动管1133连接,二号第一控制管路312、二号第二控制管路322、二号取样管路 332上端分别与地面控制系统1控制面板13内的二号第一控制管
路驱动管1141、二号第二控制管路驱动管1142、二号取样管路驱动管1143连接,第一控制管路31、第二控制管路32、取样管路33下端通过四通与进样管路34连接,第二控制管路32上四通连接处安装有下部单向阀37方向为从上至下,进样管路34上四通连接处安装有上部单向阀36,方向为从下至上,其中一号第一控制管路311、一号第二控制管路321、一号取样管路331下端通过四通与一号进样管341连接,一号第二控制管路321上四通连接处安装有一号下部单向阀371方向为从上至下,一号进样管341上四通连接处安装有一号上部单向阀361,方向为从下至上,二号第一控制管路312、二号第二控制管路322、二号取样管路332下端通过四通与二号进样管342连接,二号第二控制管路322上四通连接处安装有二号下部单向阀372方向为从上至下,二号进样管342上四通连接处安装有二号上部单向阀362,方向为从下至上,上部单向阀36与下部单向阀37确保ψ型取样管3中液体样品流通仅在第一控制管路31、取样管路33中,配合第二控制管路32与地面控制管路制造段塞流,一号进样管路341还包括第一层一号进样管路3411、第二层一号进样管路3412、第三层一号进样管路3413,二号进样管路342还包括第一层二号进样管路3421、第二层二号进样管路3422、第三层二号进样管路3423,一号进样过滤器 351包括第一层一号进样过滤器3511、第二层一号进样过滤器3512、第三层一号进样过滤器3513,二号进样过滤器352包括第一层二号进样过滤器3521、第二层二号进样过滤器3522、第三层二号进样过滤器3523,进样管路34与取样层位中的进样过滤器35 连接,其中第一层一号进样管路3411连接自动多通阀门6后穿越第一封隔器21与第一层一号进样过滤器3511连接,第二层一号进样管路3412穿越第一封隔器21、第二封隔器22与第二层一号进样过滤器3512连接,第三层一号进样管路3413穿越第一封隔器 21、第二封隔器22、第三封隔器23与第三层一号进样过滤器3513连接,其中第一层二号进样管路3421连接自动多通阀门6后穿越第一封隔器21与第一层二号进样过滤器 3521连接,第二层二号进样管路3422穿越第一封隔器21、第二封隔器22与第二层二号进样过滤器3522连接,第三层二号进样管路3423穿越第一封隔器21、第二封隔器 22、第三封隔器23与第三层二号进样过滤器3523连接。
[0116]
根据图1所示,i型取样管4包括气体控制及取样管41、气体进样过滤器42,气体控制及取样管41与封隔器系统2坐封的取样地层内的气体进样过滤器42连接,气体控制及取样管41还包括通过自动多通阀门6并联的第一层气体控制及取样管411、第二层气体控制及取样管412、第三层气体控制及取样管413,气体进样过滤器42包括第一层气体进样过滤器421、第二层气体进样过滤器422、第三层气体进样过滤器423,气体控制及取样管41连通自动多通阀门6后与第一层气体控制及取样管411、第二层气体控制及取样管412、第三层气体控制及取样管413连接,第一层气体控制及取样管411穿过第一封隔器21与第一层气体进样过滤器421连接,第二层气体控制及取样管412穿过第一封隔器21、第二封隔器22与第二层气体进样过滤器422连接,第三层气体控制及取样管413穿过第一封隔器21、第二封隔器22、第三封隔器23与第三层气体进样过滤器423连接。
[0117]
根据图5所示,温控系统5包括保温层51、分布式温控元件52、液体温度传感器 53、气体温度传感器54,分布式温控元件52(如电阻丝、加热带等)在最内层环绕着ψ型取样管3的一号第一控制管路311、二号第一控制管路312、一号第二控制管路321、二号第二控制管路322、一号取样管路331、二号取样管路332与i型取样管4的气体控制及取样管41,分布式温控元件52在取样过程中对ψ型取样管3与i型取样管4进行温控,液体温度传感器53与ψ
型取样管3的一号取样管路331相连(紧贴),气体温度传感器54与ψ型取样管3的二号取样管路332、i型取样管4的气体控制及取样管41连接 (紧贴),保温层51在外层包裹着第一控制管路31、第二控制管路32、取样管路33、气体控制及取样管41、分布式温控原件52、液体温度传感器53、气体温度传感器54。
[0118]
根据图6所示,ψ型取样管3包括第一控制管路31、第二控制管路32、取样管路 33、进样管路34、进样过滤器35、上部单向阀36、下部单向阀37,第一控制管路31、第二控制管路32、取样管路33、进样管路34通过四通互相连接,进样管路34下部与进样过滤器35连接,进样管路34上部四通连接处安装上部单向阀36方向为从下至上,第二控制管路32下部四通连接处安装下部单向阀37方向为从上至下,取样地层中的样品通过进样管路34进入到ψ型取样管3内通过地面控制系统1向第一控制管路31、第二控制管路32交替注入压力源10内的高压驱动流体在ψ型取样管3内制造不连续的驱动流体

样品段塞流,并于超低渗透地层取样时控制取样量并使样品仅在取样管路33内单向流动与地面。
[0119]
实例2:根据本实用新型与某场地进行现场实施的取样流程,流程严格按照标准程序进行,现场使用的压力源(10)为最高压力15mpa的n2钢瓶,驱动流体类型为高压的惰性类气体,压力变化记录如图8所示,对比原方法取样的压力变化如图7所示,压力地层压力扰动较小。
[0120]
一种适用超低渗透地层的ψ型管多相保真取样方法,在一般的低渗透地层使用一套ψ型取样管与一套i型取样管组合的方式气液取样,其步骤是:
[0121]
(1)开启压力源10、流体减压阀12、第一气体驱动管阀门1201、一号第一控制管路驱动管阀门1231、一号取样管路驱动管阀门1233,释放压力源10内n2(输出压力为 15mpa)通过第一驱动管11、第一气体驱动管1101、第二气体驱动管1102、一号第一控制管路驱动管1131、一号第一控制管路311进入一号ψ型取样管3a排放管内的残留液体,并在控制面板13的第二流体取样管1122出水口末端收集不含残留液体的n2,排放完毕后关闭所有阀门。
[0122]
(2)打开一号取样管路驱动管阀门1233,开始制造段塞流对一号ψ型取样管3a的一号取样管路331泄压,释放管内的n2约3s并用液体取样容器1402收集排出的n2,立即关闭一号取样管路驱动管阀门1233,同时打开压力源10、流体减压阀12、第一气体驱动管阀门1201、一号第二控制管路驱动管阀门1232,向一号ψ型取样管3a的一号第二控制管路321注入n2约1s制造段塞流,关闭一号第二控制管路驱动管阀门1232,打开一号第一控制管路驱动管阀门1231,向一号ψ型取样管3a的一号第一控制管路311 管内注入n2约1s,推动管内段塞流向一号取样管路331移动后,关闭一号第一控制管路驱动管阀门1231,再次打开一号取样管路驱动管阀门1233,释放一号ψ型取样管3a 的一号取样管路331内的n2约3s,重复步骤(2)前述步骤继续制造段塞流,先后开启关闭一号取样管路驱动管阀门1233、一号第二控制管路驱动管阀门1232、一号第一控制管路驱动管阀门1231为一个循环,重复循环约3

4次,关闭所有阀门。
[0123]
(3)先开启第一流体取样管阀门1221、第一气体驱动管阀门1201、第三气体驱动管阀门1203,向i型取样管4注入脉冲加压液体取样容器1402收集的n2并将其排空,然后开启压力源10、流体减压阀12、第三气体驱动管阀门1203,压力源10中的n2(输出压力略比地层压力高1mpa)通过第一驱动管11、第三气体驱动管1103、第四气体驱动管1104、i型取样管4注入到封隔器系统2坐封的取样地层中,提升地层压力约0.5mpa,重复3

4次步骤(2)继续制
段塞流,直至一号取样管路驱动管压力表p3压力下降为0,结束泄压进样,关闭所有阀门。
[0124]
(4)开启压力源10、流体减压阀12、第一气体驱动管阀门1201、一号第一控制管路驱动管阀门1231、一号取样管路驱动管阀门1233,向一号ψ型取样管3a注入压力源内的n2(输出压力为15mpa),n2经过第一驱动管11、第一气体驱动管1101、一号第一控制管路驱动管1131、进入到一号ψ型取样管3a内,驱动管内的段塞流经过一号取样管路331、一号取样管路驱动管1133、第二流体取样管1122到达地面,使用液体取样容器1402收集段塞流指定区间的液体样品,并将一号ψ型取样管3a内的液体全部排空,直至第二流体取样管1122管口末端未见水气,关闭所有阀门锁住一号ψ型取样管3a内的气体。
[0125]
(5)开启气体取样管阀门1223释放封隔器系统2坐封的取样地层内气体,气体样品以之前通过i型取样管4注入的n2为载体一起通过气体取样及控制管41、第四气体驱动管1104到达地面,第四气体驱动管压力表p4压力降至安全的3mpa以下时,使用气体取样容器1401收集气体样品,收集完毕后关闭气体取样管阀门1223。
[0126]
实例3:在超低渗透地层使用本实用新型装置取样时,气体样品与液体样品取样均使用ψ型取样管进行取样,现场使用的压力源10为最高压力驱动流体为15mpa的高压的惰性类气体n2钢瓶与使用加压机加压的纯净水(输出压力为15mpa),压力变化记录如图 9所示,对比原方法取样的压力变化如图7所示,压力对地层压力几乎无扰动。
[0127]
一种适用超低渗透地层的ψ型管多相保真取样方法,针对超低渗透地层气体样品稀少的情况,使用两套ψ型取样管进行气液取样,其步骤是:
[0128]
(1)开启压力源10、流体减压阀12、第一气体驱动管阀门1201、一号第一控制管路驱动管阀门1231、一号取样管路驱动管阀门1233,释放压力源10内n2(输出压力为 15mpa)通过第一驱动管11、第一气体驱动管1101、第二气体驱动管1102、一号第一控制管路驱动管1131、一号第一控制管路311进入一号ψ型取样管3a驱动管内的残留液体,液体经过一号取样管路331、一号取样管路驱动管1133、第二流体取样管1122排放到达地面,排放完毕后关闭所有阀门。
[0129]
(2)打开一号取样管路驱动管阀门1233,开始制造段塞流对一号ψ型取样管3a的一号取样管路331泄压,释放管内的n2约3s并用液体取样容器1402收集排出的n2,立即关闭一号取样管路驱动管阀门1233,同时打开压力源10、流体减压阀12、第一气体驱动管阀门1201、一号第二控制管路驱动管阀门1232,向一号ψ型取样管3a的一号第二控制管路321注入n2约1s制造段塞流,关闭一号第二控制管路驱动管阀门1232,打开一号第一控制管路驱动管阀门1231,向一号ψ型取样管3a的一号第一控制管路311 管内注入n2约1s,推动管内段塞流向一号取样管路331移动后,关闭一号第一气体控制管路驱动管阀门1231,再次打开一号取样管路驱动管阀门1233,释放一号ψ型取样管3a的一号取样管路331内的n2约3s,重复步骤2前述步骤继续制造段塞流,先后开启关闭一号取样管路驱动管阀门1233、一号第二控制管路驱动管阀门1232、一号第一控制管路驱动管阀门1231为一个循环,重复循环约7

8次关闭所有阀门直至一号取样管路驱动管压力表p3压力下降为0,结束一号ψ型取样管3a的液体进样。
[0130]
(3)开启压力源10、流体减压阀12、第一气体驱动管阀门1201、二号第一控制管路驱动管阀门1241、二号取样管路驱动管阀门1243,释放压力源10内的高压驱动纯净水 (输出压力为15mpa)通过第一驱动管11、第一气体驱动管1101、第二气体驱动管1102、二号第一
控制管路驱动管1141、二号第一控制管路312进入二号ψ型取样管3b驱动管内的残留气体,气体经过二号取样管路321、二号取样管路驱动管1143、第二流体取样管1122排放到达地面,排放完毕后关闭所有阀门。
[0131]
(4)打开二号取样管路驱动管阀门1243,开始制造段塞流对二号ψ型取样管3b的二号取样管路332泄压,释放管内的高压纯净水约3s并用液体取样容器1402收集排出的纯净水,立即关闭二号取样管路驱动管阀门1243,同时打开压力源10、流体减压阀12、第一气体驱动管阀门1201、二号第二控制管路驱动管阀门1242,向二号ψ型取样管3b 的二号第二控制管路322注入高压纯净水约1s制造段塞流,关闭二号第二控制管路驱动管阀门1242,打开二号第一控制管路驱动管阀门1241,向二号ψ型取样管3b的二号第一控制管路312管内注入高压纯净水约1s,推动管内段塞流向二号取样管路332移动后,关闭二号第一控制管路驱动管阀门1241,再次打开二号取样管路驱动管阀门1243,释放二号ψ型取样管3b的二号取样管路332内的高压纯净水约3s,重复步骤(4)前述步骤继续制造段塞流,先后开启关闭二号取样管路驱动管阀门1243、二号第二控制管路驱动管阀门1242、二号第一控制管路驱动管阀门1241为一个循环,重复循环约7

8次关闭直至二号取样管路驱动管压力表p7压力下降为0,关闭所有阀门,结束二号ψ型取样管3b的气体进样。
[0132]
(5)开启压力源10、流体减压阀12、第一气体驱动管阀门1201、一号第一控制管路驱动管阀门1231、一号取样管路驱动管阀门1233,向一号ψ型取样管3a注入压力源内的n2,高压n2经过第一驱动管11、第一气体驱动管1101、第二气体驱动管1102、一号第一控制管路驱动管1131进入到一号ψ型取样管3a内,驱动管内的段塞流经过一号取样管路331、一号取样管路驱动管1133、第二流体取样管1122到达地面,使用液体取样容器1402收集段塞流指定区间的液体样品,并将一号ψ型取样管3a内的液体全部排空,直至第二流体取样管1122管口末端未见水气,关闭所有阀门锁住一号ψ型取样管 3a内的气体,结束液体取样。
[0133]
(6)开启压力源10、流体减压阀12、第一气体驱动管阀门1201、二号第一控制管路驱动管阀门1241、二号取样管路驱动管阀门1243,向二号ψ型取样管3b注入压力源内的高压纯净水,高压纯净水经过第一驱动管11、第一气体驱动管1101、第二气体驱动管1102、二号第一控制管路驱动管1141、进入到二号ψ型取样管3b内,驱动管内的段塞流经过二号取样管路332、二号取样管路驱动管1143、第二流体取样管1122到达地面,使用气体取样容器1402收集段塞流指定区间的气体样品,并将二号ψ型取样管3b 内的液体全部排空,直至第二流体取样管1122管口末端未见水气,关闭所有阀门锁住二号ψ型取样管3b内的纯净水,结束整个取样流程等待下次取样。
[0134]
以上所述是本实用新型的优选实施方式而已,当然不能以此来限定本实用新型之权利范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型原理的前提下,还可以做出若干改进和变动,这些改进和变动也视为本实用新型的保护范围。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1