一种基于视频分析的测抽油机井示功图的方法及系统与流程

文档序号:25611566发布日期:2021-06-25 15:07阅读:504来源:国知局
一种基于视频分析的测抽油机井示功图的方法及系统与流程

1.本发明涉及油井示功图测量技术领域,尤其涉及一种基于视频分析的测抽油机井示功图的方法及系统。


背景技术:

2.采油方法通常是指将流到井底的原油采到地面上所采用的方法,其包括自喷采油法和机械采油法(或人工举升采油法)两大类。自喷采油法的特点是利用地层本身的能量来举升原油,是最经济的采油方法。但是,随着油田的不断开发,地层能量逐渐消耗,为了保证原油的稳产与高产,这些油田就不能用自喷法开采。同时,由于油层的地质特点,有一些井在一开始就不能自喷。对于上述这些不能自喷的油井,就必须人为的用机械设备给油井内液体补充能量,才能将原油从井内举升到地面,这种开采方式则称为机械采油法。机械采油法又分为气举法和抽油泵法两种。气举法的特点是利用压缩气体的能量,把原油举升到地面,而抽油泵法的特点是将各抽油泵放到井下进行采油。从国外石油工业发达的国家来看,用抽油泵法开采的井数在生产井总数中占绝大多数,美国85%左右的抽油井是用这种方法开采的,在我国用抽油泵法开采的井数也占总油井数的大部分。
3.我国油田多数用的抽油机是游梁式抽油机(又称磕头式抽油机),游梁式抽油机的类型很多,但其基本结构和工作原理是相同的:抽油机由动力设备提供动力,经悬绳器总成带动抽油泵进行工作。当抽油机向上冲程时,油管弹性收缩带动采油器向上运动,撞击滑套产生振动,同时正向单流阀关闭,使得下方区域形成负压区,相当于对地层产生了一个巨大的抽吸力。而当抽油机向下冲程时,则会在下方区域形成高压区,对底层内的油通道产生一种反向的冲击力,从而不断地把井中的原油抽出井筒。
4.在石油开采行业,为保证采油现场的生产安全,需要对采油现场及采油设备进行定期巡查以及时发现并排除安全隐患及设备故障或潜在故障以避免安全事故的发生,但人工巡检存在时效性差、效率低、准确度不足、工作量大、重复性高等缺点,尤其是当采油现场处于环境恶劣的地点。抽油机示功图作为能够直接了解深井泵工作状况好坏的一个主要手段,可以全面反映井下抽油泵运行状况以及原油的开采状况。抽油机示功图是抽油机光杆载荷与光杆位移的关系曲线,其由专门的示功仪测出,并绘在坐标纸上,图上被封闭的线所围的面积表示抽油机炉头在一次往复运动中抽油泵所作的功。抽油机示功图中横坐标表示按比例记录的光杆移动的距离,纵坐标表示按比例记录的光杆上的负荷,曲线圈闭面积的大小表示了泵做功的多少。
5.目前的示功仪系统一般由加速度传感器、载荷传感器、采集放大模块、核心处理模块、无线通信单元和外部上位设备等组成,载荷传感器和加速度传感器通常安装在方卡子和悬绳器之间的光杆上,用信号线将加速度传感器和载荷传感器连接。示功仪系统的具体工作流程为:由无线通信模块接收到外部上位设备要求测量抽油机一个周期的示功图的命令后,传递给核心处理模块,核心处理模块控制加速度传感器和载荷传感器测量一个周期(周期是根据抽油机的电机转速计算所得),两者输出的模拟信号通过采集放大模块进行处
理后传递给核心处理模块,在整个周期的测量中,核心处理模块将保存不少于200点的载荷与加速度数据组,然后根据加速度值的两次积分,得到初始各保存点的位移值,并需通过抽油机凸轮曲线、杠杆臂比等数值,修正出各保存点的正确位移值,最后通过无线通信单元发送到外部上位设备。
6.上述现有示功仪虽然能够测量出绘制示功图所需的压力载荷值和位移值,但其仍存在一定的不足:(1)载荷可以通过载荷传感器测量,而位移值通过加速度值确定,而且需要通过对加速度值的两次积分,因此,在实际操作过程中由于计算的复杂性和延时性,可能存在计算出的位移值不准确或压力载荷值与位移值无法准确对应的问题;(2)在抽油机非匀速转动时测量误差较大,不利于获得准确的测量值;(3)采用有线连接,布线成本巨大,初期建设施工量大。针对上述不足,相关研究提出了采用视觉识别的技术方案,例如公开号为cn212206438u的中国专利文献所公开的一种基于视觉识别技术的示功仪功图测量设备,其包含示功仪本体和图像处理设备,示功仪本体又包含应变体和数据显示板,应变体上设有压力载荷传感器、控制单元和充电电池,数据显示板包含太阳能电池板,该太阳能电池板作为基板其上设有边框和led点阵,led点阵用于显示压力载荷值,图像处理设备包含图像采集器和图像处理器,图像采集器用于获取数据显示板在抽油机整个冲程过程中不同位置的图像信息,图像处理器根据图像信息分别获取压力载荷值和数据显示板的实际位移值,示功仪功图测量系统包含上述的示功仪功图测量设备和上位设备。
7.实际上,上述技术方案采用的是视觉识别与传感器相结合,将载荷传感器测出的数据通过显示器的方式被外部的图像采集器所识别,解决了传统示功仪有线数据连接而导致成本增大的问题,然而:
8.一方面,上述技术方案仍无法避免传感器本身所具有的在恶劣环境下存在严重温漂影响以及精密器件使用寿命短的问题;
9.另一方面,在抽油系统工作的过程中,当悬点通过抽油杆柱带动抽油泵柱塞上下往复运动时,作用于抽油泵柱塞上的液体载荷呈周期性变化,该周期性变化的载荷将导致抽油杆柱不断机械振动,同时抽油机的运转会引起周围地面的震感,用于视觉识别的图像采集器不可避免地将出现晃动,在两者都受到不同程度且彼此异步的多维振动的情况下,视觉识别准确度以及识别效率受到严重影响,可用性差。


技术实现要素:

10.针对上述现有技术所存在的不足,本申请提出了一种基于视频分析的测抽油机井示功图的方法及系统,本系统采用视觉识别与弹性形变体相结合的技术方案,主要通过利用弹性形变体替代传统载荷传感器以同步反映抽油光杆载荷的轴向压力,并借助于视觉识别直接获取到弹性形变体的形变数据,即获取到抽油光杆载荷的轴向压力数据。本系统可以替代现已提出的传统示功仪以及外接显示器,克服了传感器本身无法避免的在恶劣环境下存在严重温漂影响以及精密器件使用寿命短的问题,并且视觉识别能够智能学习抽油系统的工作过程,消除机械振动对视觉识别带来的影响,有效地提高了视觉识别准确度以及识别效率,可应用性增强。
11.本申请所提出的一种基于视频分析的测抽油机井示功图的系统,至少包括:弹性形变体,其装载在光杆上且可在游梁式抽油机工作的过程中因游梁式抽油机光杆所受载荷
变化而随光杆同步发生形变;图像采集器,其被配置为基于预先构建的机械振动模型对当前游梁式抽油机所导致的机械振动进行分析并根据分析结果调控摄像头的运动,使得摄像头与弹性形变体之间的至少部分相对运动差异被抵消;第一数据处理模块,获取弹性形变体的形变数据及其位移数据并将其转换处理得出光杆在抽油过程中受到力的载荷量值以及位移量值,输出抽油机井示功图。
12.根据一种优选实施方式,所述测抽油机井示功图系统还包括形变补偿结构,形变补偿结构具有分别连接于弹性形变体上不同位置的至少两个固定段,其中,形变补偿结构可利用至少两个固定段通过杠杆传动的方式对弹性形变体发生的形变进行补偿以使得图像采集器足以在其与游梁式抽油机相隔预设距离的情况下视觉识别得到形变补偿结构的经补偿后的形变变化。
13.根据一种优选实施方式,形变补偿结构具有确定的形变补偿系数,图像处理器可基于形变补偿系数以及由图像采集器采集到的形变补偿结构的形变变化处理得出弹性形变体的形变数据。
14.根据一种优选实施方式,所述测抽油机井示功图系统还包括:第二数据处理模块,其被配置为在机械振动模型建立前期获取在不同工况下光杆的第一机械振动数据以及与之相对应的图像采集器的第二机械振动数据,并基于游梁式抽油机的工作周期对第一及第二机械振动数据进行处理,从而输出得到机械振动模型。
15.根据一种优选实施方式,图像采集器通过依次执行至少两级调控来抵消摄像头与弹性形变体之间的至少部分相对运动差异。
16.根据一种优选实施方式,至少一级调控可以是通过指示用于支撑摄像头的机械结构进行相对运动实现的,或通过对摄像头所采集到的摄像数据进行图像处理实现的。
17.根据一种优选实施方式,图像采集器被配置为:获取在第一时刻下图像采集器的第三机械振动数据,并结合预先构建的机械振动模型对摄像头在下一时刻将受到的机械振动进行分析预测,并根据分析结果对摄像头进行一级调控,获取在第二时刻下由摄像头所获取到的光杆的第四机械振动数据,结合预先构建的机械振动模型对一级调控下获取到的第四机械振动数据进行分析处理,并根据分析结果对摄像数据进行二级调控。
18.本申请还提出了一种基于视频分析的测抽油机井示功图方法,至少包括以下步骤:基于预先构建的机械振动模型对当前游梁式抽油机所导致的机械振动进行分析并根据分析结果调控摄像头的运动,使得摄像头与弹性形变体之间的至少部分相对运动差异被抵消;获取弹性形变体的形变数据及其位移数据并将其转换处理得出光杆在抽油过程中受到力的载荷量值以及位移量值,输出抽油机井示功图。
19.根据一种优选实施方式,所述方法还包括至少一个以下步骤:获取在第一时刻下图像采集器的第三机械振动数据,并结合预先构建的机械振动模型对摄像头在下一时刻将受到的机械振动进行分析预测,并根据分析结果对摄像头进行一级调控;获取在第二时刻下由摄像头所获取到的光杆的第四机械振动数据,结合预先构建的机械振动模型对一级调控下获取到的第四机械振动数据进行分析处理,并根据分析结果对摄像数据进行二级调控。
20.本发明所述的测抽油机井示功图系统具有以下有益效果:
21.(1)在温漂方面,由于在抽油机光杆上采用弹性形变体代替了复杂电子设备的传
统示功仪,很好地避免了传统电子示功仪存在的温漂现象;
22.(2)在数据方面,能够长时间实时录像并对图像进行逐帧图像采集以避免点状采集数据存在的采集间隔导致数据缺失的情况;保证了采集数据的真实性、有效性和同步性;同时支持历史数据查询,随时传输保存的包括视频资料在内的历史数据和时间列表;
23.(3)在功图方面,由于本系统所采集的数据没有受到温漂现象的影响,因而系统对获取的参数信息进行处理后所确定的功图也更具真实性、实时性及可靠性。
附图说明
24.为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
25.图1是本发明提出的测抽油机井示功图系统与游梁式抽油机的简化整体结构示意图;
26.图2是本发明提出的测抽油机井示功图系统的简化模块连接示意图;
27.图3是本发明提出的光杆上在装配底座所在位置处的简化正视剖面结构示意图;
28.图4是本发明提出的光杆上在装配底座所在位置处的简化俯视剖面结构示意图。
29.附图标记:1:悬绳器、2:驴头、3:游梁、6:连杆、7:支架轴承、8:支架、9:平衡块、10:曲柄、11:曲柄轴、12:减速箱、14:电动机、18:光杆、19:弹性形变体、20:摄像头、21:轴向调节底座、22:多向调节云台、23:图像采集器、24:第一数据处理模块、25:第二数据处理模块、26:第三数据处理模块、27:形变补偿结构、28:装配底座。
具体实施方式
30.为便于本领域技术人员理解本申请所提出的技术方案,如下先对本申请中涉及的相关术语进行说明:
31.游梁式抽油机,也称梁式抽油机、游梁式曲柄平衡抽油机,指含有游梁3,通过连杆机构换向,曲柄重块平衡的抽油机,俗称磕头机。游梁式抽油机的地面部分主要部件及其作用:

驴头2:安装在游梁3的前端,其作用是保证抽油时光杆18始终对准井口中心位置,驴头2的运行弧线是以支架轴承7为圆心,以游梁3前臂长为半径画弧而得到的。

游梁3:游梁3固定在支架8上,其前端安装驴头2承受井下负荷,其后端联接连杆6、曲柄10、减速箱12用以传递电动机14的动力。

曲柄

连杆机构:其作用是将电动机14的旋转运动变成驴头2的上下往复运动。在曲柄10上开设有用于调节冲程的4

8个孔。

减速箱12:其作用是将电动机14的高速旋转运动变成曲柄轴11的低速转动,同时支撑平衡块9。

平衡块9:安装在抽油机游梁3尾部或曲柄轴11上,当抽油机上冲程时,平衡块9向下运动,帮助克服驴头2上的负荷,在下冲程时,电机使平衡块9向上运行,储存能量,在平衡块9的作用下,可以减少抽油机上下冲程中的负荷差别。

悬绳器1:其为连接光杆18与驴头2的柔性联接件。

井口装置:抽油井井口装置的作用与自喷井相似,但它的井口装置比自喷井要简单,承受压力相对较低。它主要由套管三通、油管三通和密封填料盒组成。游梁式抽油机的地下部分主要部件及其作用:

抽油杆:抽油杆是抽油设备的重要组成部分,它上连抽油机,下接深井泵,起中间
传递动力的作用。抽油杆的工作过程中受到多种载荷的作用,且上下运动过程中受力极不均匀,上行时受力较大,下行时受力较小。抽油杆一般是由实心圆形钢材制成的杆件。两端均有加粗的锻头,下面有连接螺纹和搭扳手用的方形断面。抽油杆柱最上面的一根抽油杆称为光杆18。光杆18与井口密封填料盒配合使用,起密封井口的作用。

深井泵:抽油机深井泵是抽油井核心抽油设备,它是通过抽油杆和油管下到井中并沉没在动液面以下一定深度,通过抽油杆传递动力,依靠抽吸作用将原油抽到地面。
32.下面结合附图对本申请进行详细说明。
33.本申请提出了一种基于视频分析的测抽油机井示功图的方法及系统,采用该系统及方法可以完全替代现有的传统示功仪以及外接显示器等技术方案,由于本系统无需在抽油机光杆18上设置传感器,即克服了传感器本身无法避免的在恶劣环境下存在严重温漂影响以及精密器件使用寿命短的问题,并且本申请采用的视觉识别,能够智能学习抽油系统的工作过程,进一步地消除现有研究未能解决的机械振动对视觉识别带来的影响,有效地提高了视觉识别准确度以及识别效率,具有极强的可应用性。
34.本系统采用视觉识别与弹性形变体19相结合的技术方案,主要是通过利用弹性形变体19替代传统载荷传感器以同步反映抽油光杆18载荷的轴向压力。并借助于视觉识别直接获取到弹性形变体19的形变数据,即获取到抽油光杆18载荷的轴向压力数据。
35.在游梁式抽油机实际生产运作的过程中,抽油机光杆18在运行中会负载静载荷与动载荷,静载荷包括如光杆18和原油液柱的重力等,动载荷包括如惯性载荷、抽油杆柱运行过程中产生的振动和活塞摩擦、液体粘阻力、抽油杆柱连接处的硬摩擦、冲次较大和偶然发生的抽油泵泵筒内缸套错位等因素所产生的额外载荷,在上述轴向动态载荷的作用下,抽油机光杆18杆壁发生微量形变,其形变数据为绘制抽油机井示功图所需的数据。对此,本申请采用弹性形变体19直接装载在抽油机光杆18上,弹性形变体19会因抽油机光杆18所受载荷变化而随光杆18同步发生形变,即通过测量弹性形变体19即可获知光杆18的形变数据。
36.本系统通过图像采集器23持续跟随弹性形变体19,使得图像采集器23上的摄像头20能够始终对准弹性形变体19进行图像采集。但由于弹性形变体19随光杆18所产生的形变量仍较小,图像采集器23架设在离抽油机一定距离之外,无法保证有效的图像采集,基于此,本申请在弹性形变体19的基础上提出了形变补偿结构27,形变补偿结构27能够随弹性形变体19同步发生形变,并且通过形变补偿将弹性形变体19的形变表现放大,足以使得图像采集器23能够进行有效的图像采集,获取到弹性形变体19的形变数据。
37.形变补偿结构27可以为杠杆结构,具有一支点和两条杠杆,在力的作用下两条杠杆能分别绕着支点转动。其中,支点相对光杆18固定。作为一种优选实施方式,每条杠杆在支点处可划分为较短的第一杆臂和较长的第二杆臂。第一杆臂的自由端均固定在弹性形变体19上。两条杠杆的第一杆臂的自由端分别固接至弹性形变体19上的不同位置。由于光杆18主要受到轴向载荷,因而此处提及的不同位置/两处不同位置可以是指分布在弹性形变体19沿轴向的两侧上。不同位置可以是指弹性形变体19沿轴向并列设置的两处最大形变位置处。本申请中提及的固定段即为第一杆臂的自由端。作为另一种优选实施方式形变补偿结构27可以是如图3所示的正视剖面结构。
38.在本申请中,由于形变补偿结构27以两条杠杆以交叉式结构装配在弹性形变体19上,即只需观察两条杠杆的第二杆臂即可获取到杠杆的第一杆臂之间的位移变化,也就获
取到弹性形变体19上所发生的形变。
39.形变补偿结构27可以是通过装配底座28固定至光杆18上。装配底座28可以是如图4所示出的俯视剖面示意图中的u型结构。形变补偿结构27的质量较轻,其可以是例如石墨烯等此类质量轻且具有一定硬度的材质制成。形变补偿结构27的重量不会对弹性形变体19造成影响,能够真实地反映弹性形变体19的形变量。
40.形变补偿结构27安装在装配底座28的空腔中,其支点转动连接在该空腔的内壁上。装配底座28不会影响到形变补偿结构27随弹性形变体19的形变,同时防止了外部环境对形变补偿结构27可能造成的影响。
41.该空腔上靠近外部环境的一端面为透明状,且在固定好装配底座28后,该端面面向图像采集器23所在侧。即图像采集器23可以透过该透明状端面采集到形变补偿结构27的图像数据。装配底座28可以通过通常使用的例如夹紧螺栓等固定在光杆18上。图像采集器23可以是固定在抽油机的底座上,也可以是固定在巡检机器人上。
42.在本申请中,形变补偿结构27的第一杆臂比第二杆臂短,使得形变补偿结构27上第二杆臂之间的位移变化是以放大式杠杆传动,对弹性形变体19发生的形变进行补偿。在此设置下,即使图像采集器23与游梁式抽油机相隔预设距离,图像采集器23仍足以观察到游梁式抽油机这端经形变补偿后产生的形变变化。
43.在本申请中,由于弹性形变体19与形变补偿结构27均相对固定在光杆18上,因此光杆18的位移数据即为弹性形变体19或形变补偿结构27的位移数据。基于此,图像采集器23可通过其摄像头20获取到经形变补偿后的形变数据,并通过安装在其摄像头20上的位移传感器获取到摄像头20的位移数据。
44.第一数据处理模块24基于由图像采集器23获取到的形变数据以及位移数据,将其转换处理得出光杆18在抽油过程中受到力的载荷量值以及位移量值,以此可绘制并输出抽油机井示功图。
45.由摄像头20所获取到的经形变补偿后的形变数据,即为形变补偿结构27的两第二杆臂之间的位移数据,需要通过转换处理,才能得到光杆18在抽油过程中受到力的载荷量值。由于杠杆结构的力臂比例固定,即为形变补偿结构27具有确定的形变补偿系数,因此图像处理器可基于该确定的形变补偿系数,对由摄像头20采集到的形变补偿结构27的形变变化进行处理,以此得出弹性形变体19的形变数据或光杆18在抽油过程中受到力的载荷量值。
46.图像采集器23主要包括轴向调节底座21和多向调节云台22,轴向调节底座21固定在地面上且其上端固定支撑该多向调节云台22,多向调节云台22用于稳定摄像头20。在游梁式抽油机实际生产运作的过程中,抽油机光杆18在抽油机带动下沿其轴向运动,图像采集器23通过轴向调节底座21来调控摄像头20在轴向上的位置,和/或通过多向调节云台22来调控摄像头20的摄像朝向,使摄像头20跟随光杆18上的形变补偿结构27或弹性形变体19。
47.在游梁式抽油机实际生产运作的过程中,抽油杆在油管内往复运动,在静载荷和动载荷的作用下,因惯性载荷、油柱加卸载以及抽油杆和抽油泵的阻力变化,将对抽油杆造成纵向和/或横向的振动影响,同时也会对抽油机周围地面造成振动影响,进而将导致摄像头20与光杆18的非同步机械振动影响。对此,本申请中所提出的图像采集器23被配置为:基
于预先构建的机械振动模型,对当前游梁式抽油机所导致的机械振动进行分析;根据分析结果调控摄像头20的运动,使得摄像头20与弹性形变体19之间的至少部分相对运动差异被抵消。
48.相对运动差异,是指在游梁式抽油机实际生产运作的过程中,摄像头20在其所产生的机械振动下处于非绝对静止状态,弹性形变体19/形变补偿结构27/光杆18在其所产生的机械振动下同样处于非绝对静止状态,并且上述两者之间所受到的机械振动不同步,也就导致两者之间存在相对的运动差异。在本申请中,通过采用摄像跟随以及对因机械振动所受到的影响进行补偿的方式,能够至少部分抵消摄像头20与光杆18的非同步机械振动影响,使得摄像头20所获取到的图像数据能够清晰反映形变补偿结构27的形变变化,提高视觉识别的精确度。
49.在模型建立前期,在光杆18上安装有第一振动传感器,用于获取关于光杆18机械振动的建模用样本数据。在摄像头20上安装有第二振动传感器,用于获取关于摄像头20机械振动的建模用样本数据。第一振动传感器可以为光纤振动传感器。第二振动传感器可以是光纤振动传感器、陀螺仪、加速度传感器等。
50.第二数据处理模块25利用第一及第二振动传感器,通过实际抽油机运作实验可以获取到在不同工况下光杆18的第一机械振动数据,以及与之相对应的图像采集器23的第二机械振动数据。上述与之相对应,主要是指两者数据的记录时刻相对应。第一与第二机械振动数据是以与抽油机工作同周期的方式进行采集的。
51.第二数据处理模块25将获取到的第一或第二机械振动数据以时间

空间分布的方式进行表示。用户可根据游梁式抽油机的现场实际运作情况,对获取到的各类工况下的样本数据添加标签,构成各类工况下的标签样本。第二数据处理模块25对同属一类工况下的标签样本进行比对处理,获取到同属一类工况下的具有不同数据特征的样本数据。不同数据特征可以是指机械振动的发生方向、数据变化斜率、振动大小等等。
52.通过对某一游梁式抽油机开展实际运作实验,可以获取到在不同工况下的不同周期下的第一机械振动数据的第一样本库以及第二机械振动数据的第二样本库。第二数据处理模型利用第一与第二样本库以及第一与第二样本库之间的机械振动关联关系而构建得出机械振动模型。机械振动关联关系指的是:由于摄像头20与光杆18所受到的机械振动均受自同一振动源即为抽油机,因此摄像头20与光杆18各自受到的机械振动之间存在时间上的相关联性,换而言之,通过仅需获取摄像头20的振动情况即可对应地预测得出光杆18所受到的振动情况。
53.机械振动模型指的是:在实际的游梁式抽油机运作过程中,当第二数据处理模块25在第一时刻下获取到图像采集器23的第三机械振动数据,第二数据处理模块25可以结合当前游梁式抽油机的历史数据以及第三机械振动数据,分析并提取至少一个数据特征;第二数据处理模块25基于输出的至少一个数据特征可在机械振动模型中匹配到至少一个样本类型;该样本类型下对应有相应的周期性振动数据,以此第二数据处理模块25可对摄像头20在下一时刻将受到的机械振动进行分析预测,输出第二时刻下摄像头20可能发生的机械振动数据;第二数据处理模块25基于两样本库之间的关联关系,可同时输出第二时刻下光杆18可能发生的机械振动数据。
54.第二数据处理模块25将摄像头20可能在第二时刻下发生的机械振动数据,与光杆
18可能在第二时刻下发生的机械振动数据相叠加,输出两者之间的相对运动差异。以此图像采集器23基于该相对运动差异并通过依次执行至少两级调控,来抵消摄像头20与弹性形变体19之间的至少部分相对运动差异。
55.一级调控可以是通过指示用于支撑摄像头20的多向调节云台22进行相对运动实现的。二级调控通过对摄像头20所采集到的摄像数据进行图像处理实现的。
56.第二数据处理模块25在第一时刻下获取到由第二振动传感器采集得到的第三机械振动数据,结合预先构建的机械振动模型进行分析预测,预测得出摄像头20与光杆18之间的在第二时刻下的相对运动差异,并根据分析结果对摄像头20进行一级调控。即指示用于支撑摄像头20的多向调节云台22以与相对运动差异相反等量的方式进行运动。
57.第二数据处理模块25在第二时刻下获取到由摄像头20所获取到的光杆18的第四机械振动数据。此处第四机械振动数据并不是由振动传感器获取到的,而是第二数据处理模块25通过摄像头20的图像数据进行分析处理得到的,光杆18体积较大足以通过摄像头20拍摄获取其当前的晃动情况(主要为径向上)。一级调控基于预测分析的方式抵消了较大程度上的运动差异,但在实际中往往存在部分偏差,针对该部分偏差,在本申请中,第二数据处理模块25结合预先构建的机械振动模型对一级调控下获取到的摄像数据/第四机械振动数据进行分析处理,并根据分析结果对摄像数据进行二级调控。二级调控是通过图像处理算法等来消除图像数据中因机械振动受到的影响。
58.本申请还提出了一种基于视频分析的测抽油机井示功图方法,至少包括以下步骤:
59.通过对某一游梁式抽油机开展实际运作实验,建立样本库;
60.基于样本库来构建机械振动模型;
61.对当前游梁式抽油机所导致的机械振动进行分析并根据分析结果调控摄像头20的运动,使得摄像头20与弹性形变体19之间的至少部分相对运动差异被抵消;
62.获取弹性形变体19的形变数据及其位移数据并将其转换处理得出光杆18在抽油过程中受到力的载荷量值以及位移量值,输出抽油机井示功图。
63.该系统还包括第三数据处理模块26,第三数据处理模块26能够进行包括但不限于控制数据分流和多种监控预警处理的工作。其中,进行多种监控预警处理是指第三数据处理模块26可对第二数据处理模块25输出的示功图进行分析并在发现示功图异常时发出报警,和/或并通过通讯模块通知用户。
64.该系统还包括电源模块,用于为整个测抽油机井示功图系统的各模块提供电源,该电源优选为兼容太阳能充电的可充电锂电池,以保证所述系统能够长时间的稳定工作。
65.第二数据处理模块25可被配置为对采集的数据依次进行数据过滤,以去除奇异点和偏差过大的数值。第二数据处理模块25可被配置为将图像采集的模拟信号转化为数字信号以便于运算。第二数据处理模块25可被配置为进行多次积分,以得到位移数据。第二数据处理模块25可被配置为进行数据处理以得到绘制示功图所需的数据。
66.第二数据处理模块25以位移量值为横轴,以载荷量值为纵轴建立坐标系。对每一冲程内所有对应位移的载荷画点、连线,以绘制出载荷与位移关系曲线的示功图。
67.通讯模块包括至少一个通讯单元,其中,所述通讯单元至少能够是局域网无线通讯单元如z igbee、远程通讯单元如gprs和/或cdma通讯和/或串口通讯单元。优选地,当通
讯模块同时具有上述三种通讯单元时,优先选用局域网无线通讯单元如zigbee。
68.第二数据处理模块25可被配置为:能够对视频监测到的抽油机的冲次与产油量之间的高低关系进行判断并做出反应。
69.第二数据处理模块25能够响应于抽油机的冲次过快引起的抽油能力高于油井的产油量的情况而发送给用户和/或抽油机主电机减慢请求和/或指令以避免出现包括但不限于空抽、液击、损伤抽油机、光杆和/或抽油泵、降低使用寿命和/或浪费电能的情况发生。
70.第二数据处理模块25能够响应于抽油机的冲次过慢引起的抽油能力低于油井的产油量的情况而发送给用户和/或抽油机主电机加快请求和/或指令以避免油井产量降低的情况发生,其中,发送给用户的加快/减慢请求需用户自行对抽油机冲次快慢进行手动调节,发送给抽油机主电机的加快/减慢指令能够通过变频器控制抽油机主电机对抽油机冲次快慢进行自动调节。
71.第二数据处理模块25可以包括但不限于如下单元中的一个或几个:参数调配单元、数据分流单元、系统升级单元。
72.参数调配单元,被配置为根据至少包括冲程和/或冲次变化的油井现场情况能够智能调整至少一种系统配置参数,其中,系统配置参数包括但不限于停井报警、故障报警和/或供电报警。
73.数据分流单元,与通讯模块连接,被配置为控制模块调控其他模块的数据输入、数据存储和选择数据传输方式。
74.系统升级单元,与通讯模块连接,被配置为对所述测抽油机井示功图系统进行系统程序远程升级。
75.电源模块可以包括依次连接的电池单元与电源管理单元。电池单元用于为本系统其它模块提供电能。电源管理单元用于控制电池单元并对总电源进行分级分配,并且还能够实时监测电源是否正常,当供电电源异常时由第二或第三数据处理模块通过通讯模块通知用户以及时对电源故障进行排查。
76.电池单元能够利用太阳能转换为所需要的电能并为其他模块提供电能。
77.需要注意的是,上述具体实施例是示例性的,本领域技术人员可以在本发明公开内容的启发下想出各种解决方案,而这些解决方案也都属于本发明的公开范围并落入本发明的保护范围之内。本领域技术人员应该明白,本发明说明书及其附图均为说明性而并非构成对权利要求的限制。本发明的保护范围由权利要求及其等同物限定。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1