压缩机及其制造方法与流程

文档序号:17098091发布日期:2019-03-14 00:02阅读:682来源:国知局
压缩机及其制造方法与流程

本发明涉及制冷设备领域,具体地说,涉及滚动转子式压缩机及其制造方法。



背景技术:

通常而言,封闭式压缩机包括用于在密封外壳的内部空间产生驱动力的电机,以及联接到所述电机用于压缩制冷剂的压缩部件。封闭式压缩机可以根据制冷剂压缩机构的不同而分类为往复式压缩机、涡旋式压缩机、滚动转子式压缩机。往复式压缩机、涡旋式压缩机以及滚动转子式压缩机都是利用电机的旋转力。

现有的滚动转子式压缩机,多是零部件加工好之后,先组装成泵体部分(主要包括:曲轴、活塞、气缸、上下缸盖、叶片等),再通过三点/六点熔接的方式,将壳体和泵体连接起来。然而,这种方式,会因熔接变形破坏原有的装配精度,造成定转子气隙不均匀,使得噪音增大、性能变差。

因此,本发明提供了压缩机及其制造方法。



技术实现要素:

针对现有技术中的问题,本发明的目的在于提供压缩机及其制造方法,不会因为焊接变形破坏原有的装配精度,从而能够保证定转子气隙均匀,使得噪音减小、性能变好。

根据本发明的一个方面,提供一种压缩机,包括:壳体;

电机和气缸,容置于所述壳体内;

曲轴,所述曲轴将电机的旋转力传递给所述气缸中的活塞,以压缩制冷剂;

上缸盖和下缸盖,与所述气缸共同限定压缩空间并支撑所述曲轴;

所述上缸盖位于所述电机和所述气缸之间,所述上缸盖具有供所述曲轴通过的通孔,

所述上缸盖具有面向所述电机的第一侧和面向所述气缸的第二侧;

所述壳体的内壁与所述上缸盖第一侧的外周延和/或第二侧的外周延激光熔接,熔接焊点的轴向与所述壳体内壁的夹角的角度范围是0°至45°。

优选地,所示熔接焊点的轴向与所述壳体的夹角的角度范围是15°至30°。

优选地,所述熔接焊点的熔深大于1.5mm。

优选地,所述上缸盖第一侧的外周延和第二侧的外周延分别与所述壳体的内壁沿周向多点分布式激光熔接,所述上缸盖第一侧的外周延与所述壳体的内壁的熔深与所述上缸盖第二侧的外周延与所述壳体的内壁的熔深相等。

优选地,所述上缸盖的材料为灰铁,所述壳体的材料为碳钢。

优选地,所述上缸盖的外周延与所述壳体内壁部分微过盈或者间隙配合,所述微过盈的单边过盈量小于0.5mm,所述间隙配合的单边过盈量大于-0.5mm。

优选地,所述熔接焊点根据所述上缸盖的轴线对称分布在所述上缸盖的外周延。

优选地,所述熔接焊点根据所述上缸盖的非对称分布在所述上缸盖的外周延。

根据本发明的另一个方面,还提供一种压缩机的制造方法,其特征在于,包括:提供一壳体和一上缸盖,将所述壳体的内壁与所述上缸盖第一侧的外周延和/或第二侧的外周延通过激光发射器进行激光熔接,所述激光发射器的轴向与所述壳体内壁的夹角的角度范围是0°至45°。

优选地,所示熔接焊点的轴向与所述壳体的夹角的角度范围是15°至30°。

优选地,所述熔接焊点的熔深大于1.5mm。

优选地,所述上缸盖第一侧的外周延和第二侧的外周延分别通过两台激光发射机同时与所述壳体的内壁沿周向多点分布式激光熔接,所述上缸盖第一侧的外周延与所述壳体的内壁的熔深与所述上缸盖第二侧的外周延与所述壳体的内壁的熔深相等。

优选地,所述上缸盖的材料为灰铁,所述壳体的材料为碳钢。

优选地,所述上缸盖的外周延与所述壳体内壁部分微过盈或者间隙配合,所述微过盈的单边过盈量小于0.5mm,所述间隙配合的单边过盈量大于-0.5mm。

优选地,所述熔接焊点根据所述上缸盖的轴线对称分布在所述上缸盖的外周延。

本发明的压缩机及其制造方法不会因为焊接变形破坏原有的装配精度,从而能够保证定转子气隙均匀,使得噪音减小、性能变好。

附图说明

通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显。

图1是本发明的压缩机的剖面图;

图2是本发明的第一实施例中压缩机中上缸盖与壳体内壁的熔接示意图;

图3是图2中m区域的放大图;

图4是图2中a方向视角的示意图;

图5是图2中b方向视角的示意图;

图6是本发明的第二实施例中压缩机中上缸盖与壳体内壁的熔接示意图;

图7是图6中c方向视角的示意图;

图8是本发明的第三实施例中压缩机中上缸盖与壳体内壁的熔接示意图;以及

图9是图8中d方向视角的示意图。

附图标记

1上盖

2壳体

3电机

31曲轴

32内转子

33外定子

4上缸盖

41第一面

42第二面

5气缸

6下缸盖

7下盖

8储液器

91熔接焊点

92熔接焊点

具体实施方式

现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式。相反,提供这些实施方式使得本发明将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。

图1是本发明的压缩机的剖面图。图2是本发明的第一实施例中压缩机中上缸盖与壳体内壁的熔接示意图。如图1至2所示本发明的压缩机,包括:上盖1、壳体2、电机3、上缸盖4、气缸5、下缸盖6、下盖7以及储液器8。其中,电机3和气缸5容置于壳体2内,电机3包括内转子32以及外定子33;曲轴31将电机3的旋转力传递给气缸5中的活塞,以压缩制冷剂;上缸盖4和下缸盖6与气缸5共同限定压缩空间并支撑曲轴31;上缸盖4位于电机3和气缸5之间,上盖1和下盖7分别罩盖壳体2的两端,储液器8与气缸5联通,向气缸5提供制冷剂。上缸盖4具有供曲轴31通过的通孔,上缸盖4具有面向电机3的第一侧41和面向气缸5的第二侧42;壳体2的内壁与上缸盖4第一侧41的外周延和第二侧42的外周延激光熔接,熔接焊点的轴向与壳体2内壁的夹角的角度范围是0°至45°。上缸盖4的材料为灰铁,壳体2的材料为碳钢,通过激光焊接,灰铁的上缸盖自两个方向和碳钢的壳体熔融在一起。本实施例中的熔深是指母材熔化部的最深位与母材表面之间的距离。

在一个优选实施例中,所示熔接焊点的轴向与壳体2的夹角的角度范围是15°至30°。

在一个优选实施例中,壳体2的内壁与上缸盖4第一侧41的外周延和第二侧42的外周延圆周激光熔接,可以是一周全部焊接,也可以是两条或多条焊缝分布在圆周上。

在一个优选实施例中,所述熔接焊点也可以根据所述上缸盖的非对称分布在所述上缸盖的外周延。

在一个优选实施例中,熔接焊点的熔深大于1.5mm,但不以此为限。熔接焊点的熔深大于1.5mm,方可保证强度和刚性要求,并且,熔深越深,对连接件的刚性来说越好。

在一个优选实施例中,上缸盖4第一侧41的外周延和第二侧42的外周延分别与壳体2的内壁沿周向多点分布式激光熔接,上缸盖4第一侧41的外周延与壳体2的内壁的熔深与上缸盖4第二侧42的外周延与壳体2的内壁的熔深相等。在相同的熔深前提下,上下都进行焊接的效果最好,能够充分保证上缸盖4与壳体2的内壁之间的连接强度。

上缸盖4的外周延与壳体2内壁部分微过盈或者间隙配合,微过盈的单边过盈量小于0.5mm,间隙配合的单边过盈量大于-0.5mm,但不以此为限。

熔接焊点根据上缸盖4的轴线对称分布在上缸盖4的外周延,但不以此为限。

在一个优选实施例中,上缸盖端面侧的倒角边,应在0.5mm以下。

图3是图2中m区域的放大图。图4是图2中a方向视角的示意图。图5是图2中b方向视角的示意图。如图2至5所示,本实施例中,上缸盖4第一侧41的外周延与壳体2的内壁通过激光熔接形成多个熔接焊点91,每个熔接焊点91与壳体2的内壁之间形成夹角a,夹角a的范围可以是0°至45°,优选为15°至30°。同样地,上缸盖4第二侧42的外周延与壳体2的内壁通过激光熔接形成多个熔接焊点92,每个熔接焊点92与壳体2的内壁之间形成夹角b,夹角b的范围可以是0°至45°,优选为15°至30°。

参考图1至5,本发明还提供一种压缩机的制造方法,包括:提供一壳体和一上缸盖,将壳体的内壁与上缸盖第一侧的外周延和/或第二侧的外周延通过激光发射器进行激光熔接,激光发射器的轴向与壳体内壁的夹角的角度范围是0°至45°。将上缸盖和壳体圆周焊接后,再对连接件进行精加工,可以减少焊接产生的变形,提高装配精度,使得定转子气隙更加均匀;定转子气隙更加均匀,会有效的降低噪音、性能也会进一步得到提升。压缩机的制造方法还包括其他常规的安装步骤,例如组装成泵体部分(主要包括:曲轴、活塞、气缸、上下缸盖、叶片)等,此处不再赘述。

在一个优选实施例中,激光发射器的轴向与壳体的夹角的角度范围是15°至30°。

在一个优选实施例中,熔接焊点的熔深大于1.5mm。

在一个优选实施例中,上缸盖第一侧的外周延和第二侧的外周延分别与壳体的内壁沿周向多点分布式激光熔接,此时,需要在上缸盖第一侧和第二侧分别设置至少两台激光发射器,上缸盖第一侧的外周延与壳体的内壁的熔深与上缸盖第二侧的外周延与壳体的内壁的熔深相等。

在一个优选实施例中,上缸盖的材料为灰铁,壳体的材料为碳钢。焊接时,灰铁的含碳量高于碳钢的壳体,激光焊接的能量应尽量打在低碳钢的壳体上,激光发射器和壳体的夹角的角度范围为:0°~45°。

在一个优选实施例中,上缸盖的外周延与壳体内壁部分微过盈或者间隙配合,微过盈的单边过盈量小于0.5mm,间隙配合的单边过盈量大于-0.5mm。

在一个优选实施例中,熔接焊点根据上缸盖的轴线对称分布在上缸盖的外周延。

在一个优选实施例中,所述熔接焊点也可以根据所述上缸盖的非对称分布在所述上缸盖的外周延。

图6是本发明的第二实施例中压缩机中上缸盖与壳体内壁的熔接示意图。图7是图6中c方向视角的示意图。如图6和7所示,本发明的第二实施例中是第一实施例的变化例,第二实施例中壳体2的内壁仅仅与上缸盖4第一侧41的外周延进行两处激光熔接,熔接焊点91根据上缸盖4的轴线对称分布。熔接焊点91的轴向与壳体2内壁的夹角a的夹角的角度范围是0°至45°。上缸盖4第二侧42无需与壳体2的内壁熔接,第二实施例减少了激光发射器的使用,节约了制造成本和时间。

图8是本发明的第三实施例中压缩机中上缸盖与壳体内壁的熔接示意图。图9是图8中d方向视角的示意图。如图8和9所示,本发明的第三实施例中是第一实施例的变化例,第三实施例中壳体2的内壁仅仅与上缸盖4第二侧42的外周延进行多处激光熔接。熔接焊点92的轴向与壳体2内壁的夹角b的夹角的角度范围是0°至45°。上缸盖4第一侧41无需与壳体2的内壁熔接,第三实施例也减少了激光发射器的使用,节约了制造成本和时间。

综上,本发明的压缩机及其制造方法不会因为焊接变形破坏原有的装配精度,从而能够保证定转子气隙均匀,使得噪音减小、性能变好。

以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1