旋转式压缩机以及冷冻循环装置的制作方法

文档序号:22972564发布日期:2020-11-19 22:01阅读:145来源:国知局
旋转式压缩机以及冷冻循环装置的制作方法

本发明的实施方式涉及多缸型的旋转式压缩机以及具备该旋转式压缩机的冷冻循环装置。



背景技术:

近年来,为了提高制冷剂的压缩能力,而开发出在旋转轴的轴向上排列有三组制冷剂压缩部的3缸型旋转式压缩机。这种旋转式压缩机所使用的旋转轴具备:在制冷剂压缩部的缸室内偏心旋转的第1至第3曲柄部;跨在第1曲柄部与第2曲柄部之间、以及第2曲柄部与第3曲柄部之间的一对连结轴部。

因而,3缸型旋转式压缩机与在旋转轴的轴向上排列有两组制冷剂压缩部的2缸型旋转式压缩机相比较,旋转轴的全长增大,并且支承旋转轴的一对轴承间的距离变长。因此,为了抑制高速旋转时的旋转轴的轴偏摆,需要提高位于第1至第3曲柄部之间的连结轴部的刚性。

由此,以往,为了提高旋转轴的连结轴部的刚性,尝试将连结轴部的截面形状形成为将一对圆弧组合而成的形状。

现有技术文献

专利文献

专利文献1:日本专利第4594302号公报

专利文献2:日本专利第5441982号公报

专利文献3:日本专利第5117503号公报



技术实现要素:

发明要解决的课题

另一方面,在3缸型旋转式压缩机中,为了将三组制冷剂压缩部对制冷剂进行压缩时的扭矩变动抑制得较小,优选将相邻的曲柄部的偏心方向在旋转轴的周向上错开120°地设定。

但是,在具有截面形状为将一对圆弧组合而成的形状的连结轴部的旋转轴中,在将相邻的曲柄部的偏心方向在旋转轴的周向上错开120°地设定的情况下,无法避免在从旋转轴的旋转中心到一对圆弧的2个交点中的一个交点为止的距离、与从旋转轴的旋转中心到一对圆弧的2个交点中的另一个交点为止的距离之间产生差异。

其结果,旋转轴的重心位置从旋转轴的旋转中心向径向偏移,旋转轴的平衡恶化。平衡较差的旋转轴成为助长3缸型旋转式压缩机的振动的一个主要原因。

本发明的目的在于得到一种旋转式压缩机,能够确保旋转轴的连结轴部的刚性,并且良好地维持该旋转轴的平衡,实现低振动、低噪音化。

用于解决课题的手段

根据实施方式,旋转式压缩机具备:

旋转轴,一体地具有:第1轴颈部,由第1轴承支承;第2轴颈部,与上述第1轴颈部同轴状地设置,由第2轴承支承;具有圆形的截面形状的第1曲柄部至第3曲柄部,设置在上述第1轴颈部与上述第2轴颈部之间,在上述轴颈部的轴向上隔开间隔地排列,并且在上述轴颈部的周向上使偏心方向错开地配置;第1连结轴部,跨在上述第1曲柄部与上述第2曲柄部之间;以及第2连结轴部,跨在上述第2曲柄部与上述第3曲柄部之间,相邻的上述曲柄部的偏心方向相对于上述轴颈部的旋转中心在周向上在120°±10°的范围内错开地设置;

环状的滚子,与上述旋转轴的上述第1曲柄部至第3曲柄部的外周面嵌合;

第1缸体,规定第1缸室,该第1缸室收纳与上述第1曲柄部嵌合的上述滚子,供上述滚子与上述第1曲柄部一起偏心旋转;

第2缸体,规定第2缸室,该第2缸室收纳与上述第2曲柄部嵌合的上述滚子,供上述滚子与上述第2曲柄部一起偏心旋转;

第3缸体,规定第3缸室,该第3缸室收纳与上述第3曲柄部嵌合的上述滚子,供上述滚子与上述第3曲柄部一起偏心旋转;

第1中间分隔板,夹设在上述第1缸体与上述第2缸体之间,上述旋转轴的上述第1连结轴部贯通该第1中间分隔板;以及

第2中间分隔板,夹设在上述第2缸体与上述第3缸体之间,上述旋转轴的上述第2连结轴部贯通该第2中间分隔板。

上述旋转轴的上述第1连结轴部所具有的截面形状包括:第1外表面,形成在与位于上述第1曲柄部的偏心方向的相反侧的上述第1曲柄部的外周面相同的位置、或者比该外周面向上述旋转轴的旋转中心侧偏置的位置,至少中间部弯曲成圆弧状;第2外表面,形成在与位于上述第2曲柄部的偏心方向的相反侧的上述第2曲柄部的外周面相同的位置、或者比该外周面向上述旋转轴的旋转中心侧偏置的位置,至少中间部弯曲成圆弧状;以及第3外表面,在偏离上述旋转轴的旋转中心的位置处跨在上述第1外表面与上述第2外表面之间。

在上述第1连结轴部的与上述旋转轴的轴向正交的截面中,如果将在使上述第1外表面以及上述第2外表面延长时、从上述第1外表面与上述第2外表面相交的一端侧的交点到上述旋转轴的旋转中心为止的距离设为l1,将从上述第1外表面与上述第2外表面相交的另一端侧的交点到上述旋转轴的旋转中心为止的距离设为l2,将从上述第3外表面到上述旋转轴的旋转中心为止的距离设为l3,则满足如下关系:

l1>l3≥l2。

附图说明

图1是概要地表示实施方式的冷冻循环装置的构成的回路图。

图2是实施方式的3缸型旋转式压缩机的截面图。

图3是放大表示实施方式中的3缸型旋转式压缩机的压缩机构部的截面图。

图4是表示从轴向观察旋转轴时的第1曲柄部、第2曲柄部、第3曲柄部以及第1连结轴部的相对位置关系的图。

图5中的(a)是表示将第1曲柄部与第2曲柄部的偏心方向的角度差θ设为120°时的第1连结轴部的最大厚度tmax的图。图5中的(b)是表示将第1曲柄部与第2曲柄部的偏心方向的角度差θ设为180°时的第1连结轴部的最大厚度tmax的图。

图6是表示实施方式中的叶片与滚子之间的位置关系的截面图。

图7是表示使相邻的曲柄部的偏心方向的相位角θ变化了时的3缸型旋转式压缩机的扭矩变动率的特性图。

图8中的(a)是表示将与第2曲柄部对应的滚子从第1轴颈部引导至第1曲柄部的外周面的状态的截面图。图8中的(b)是表示使与第2曲柄部对应的滚子在第1连结轴部的外侧倾斜的状态的截面图。图8中的(c)是表示使与第2曲柄部对应的滚子在第1连结轴部的位置处沿着旋转轴的径向移动的状态的截面图。图8中的(d)是表示使滚子嵌合于第2曲柄部的外周面的状态的截面图。

具体实施方式

以下,参照图1至图8对实施方式进行说明。

图1例如是作为冷冻循环装置的一例的空调机1的冷冻循环回路图。空调机1作为主要要素而具备旋转式压缩机2、四通阀3、室外热交换器4、膨胀装置5以及室内热交换器6。构成空调机1的上述多个要素经由供制冷剂循环的循环回路7连接。

具体而言,如图1所示,旋转式压缩机2的排出侧与四通阀3的第1端口3a连接。四通阀3的第2端口3b与室外热交换器4连接。室外热交换器4经由膨胀装置5而与室内热交换器6连接。室内热交换器6与四通阀3的第3端口3c连接。四通阀3的第4端口3d经由储液器8而与旋转式压缩机2的吸入侧连接。

在空调机1以制冷模式进行运转的情况下,四通阀3进行切换,以使第1端口3a与第2端口3b连通、第3端口3c与第4端口3d连通。当空调机1以制冷模式开始运转时,由旋转式压缩机2压缩后的高温高压的气相制冷剂经由四通阀3而被引导至作为散热器(冷凝器)发挥功能的室外热交换器4。

被引导至室外热交换器4的气相制冷剂通过与空气进行热交换而冷凝,变化为高压的液相制冷剂。高压的液相制冷剂在通过膨胀装置5的过程中被减压而变化为低压的气液二相制冷剂。气液二相制冷剂被引导至作为吸热器(蒸发器)发挥功能的室内热交换器6,并且在通过该室内热交换器6的过程中与空气进行热交换。

其结果,气液二相制冷剂从空气夺取热量而蒸发,变化为低温低压的气相制冷剂。在室内热交换器6中通过的空气由液相制冷剂的蒸发潜热冷却,成为冷风而被送至应进行空气调节(制冷)的场所。

通过室内热交换器6之后的低温低压的气相制冷剂经由四通阀3而被引导至储液器8。当在制冷剂中混入有未蒸发完的液相制冷剂的情况下,通过储液器8分离为液相制冷剂和气相制冷剂。液相制冷剂被分离之后的低温低压的气相制冷剂被旋转式压缩机2吸入,并且通过该旋转式压缩机2再次被压缩为高温高压的气相制冷剂而向循环回路7排出。

另一方面,在空调机1以供暖模式进行运转的情况下,四通阀3进行切换,以使第1端口3a与第3端口3c连通、第2端口3b与第4端口3d连通。因此,从旋转式压缩机2排出的高温高压的气相制冷剂经由四通阀3而被引导至室内热交换器6,并与在该室内热交换器6中通过的空气进行热交换。即,室内热交换器6作为冷凝器发挥功能。

其结果,在室内热交换器6中通过的气相制冷剂通过与空气的热交换而冷凝,变化为高压的液相制冷剂。在室内热交换器6中通过的空气通过与气相制冷剂的热交换而被加热,成为暖风而被送至应进行空气调节(供暖)的场所。

在室内热交换器6中通过了的高温的液相制冷剂被引导至膨胀装置5,并且在通过该膨胀装置5的过程中被减压而变化为低压的气液二相制冷剂。气液二相制冷剂被引导至作为蒸发器发挥功能的室外热交换器4,并且在此处通过与空气进行热交换而蒸发,变化为低温低压的气相制冷剂。在室外热交换器4中通过了的低温低压的气相制冷剂经由四通阀3以及储液器8而被旋转式压缩机2吸入。

接着,参照图2至图8对空调机1所使用的旋转式压缩机2的具体构成进行说明。图2是表示立式的3缸型旋转式压缩机2的截面图。如图2所示,3缸型旋转式压缩机2作为主要的要素而具备密闭容器10、电动机11以及压缩机构部12。

密闭容器10具有圆筒状的周壁10a,并且以沿着铅垂方向的方式立起。排出管10b设置在密闭容器10的上端部。排出管10b经由循环回路7而与四通阀3的第1端口3a连接。进而,在密闭容器10的下部蓄积有对压缩机构部12进行润滑的润滑油。

电动机11以位于比润滑油的油面a靠上方的位置的方式收纳在密闭容器10的沿着轴向的中间部。电动机11是所谓的内转子型的电动机,具备定子13和转子14。定子13固定于密闭容器10的周壁10a的内表面。转子14同轴状地位于密闭容器10的中心轴线o1上,并且由定子13包围。

压缩机构部12以浸渍于润滑油的方式收纳在密闭容器10的下部。如图2以及图3所示,压缩机构部12作为主要的要素而具备第1制冷剂压缩部15a、第2制冷剂压缩部15b、第3制冷剂压缩部15c、第1中间分隔板16、第2中间分隔板17、第1轴承18、第2轴承19以及旋转轴20。

第1至第3制冷剂压缩部15a、15b、15c在密闭容器10的轴向上隔开间隔地排列成一列。第1至第3制冷剂压缩部15a、15b、15c分别具有第1缸体21a、第2缸体21b以及第3缸体21c。第1至第3缸体21a、21b、21c为,例如,沿着密闭容器10的轴向的厚度被设定为彼此相同。

第1中间分隔板16夹设在第1缸体21a与第2缸体21b之间。第1中间分隔板16的上表面以从下方覆盖第1缸体21a的内径部的方式与第1缸体21a的下表面重叠。第1中间分隔板16的下表面以从上方覆盖第2缸体21b的内径部的方式与第2缸体21b的上表面重叠。

进而,在第1中间分隔板16的中央部形成有圆形的贯通孔16a。贯通孔16a位于第1缸体21a的内径部与第2缸体21b的内径部之间。

第2中间分隔板17夹设在第2缸体21b与第3缸体21c之间。第2中间分隔板17的上表面以从下方覆盖第2缸体21b的内径部的方式与第2缸体21b的下表面重叠。第2中间分隔板17的下表面以从上方覆盖第3缸体21c的内径部的方式与第3缸体21c的上表面重叠。

进而,在第2中间分隔板17的中央部形成有圆形的贯通孔17a。贯通孔17a位于第2缸体21b的内径部与第3缸体21c的内径部之间。

第1中间分隔板16以及第2中间分隔板17分别具有沿着密闭容器10的轴向的厚度t1以及t2。根据本实施方式,第1中间分隔板16的厚度t1比第2中间分隔板17的厚度t2厚。

第1轴承18位于第1缸体21a的上方。第1轴承18具有朝向密闭容器10的周壁10a的内表面伸出的凸缘部23。凸缘部23以从上方覆盖第1缸体21a的内径部的方式与第1缸体21a的上表面重叠。

根据本实施方式,第1轴承18的凸缘部23由环状的支承框架24包围。支承框架24例如通过焊接等方法而固定于密闭容器10的周壁10a的内表面的规定位置。

支承框架24的下表面与第1缸体21a的外周部的上表面重叠。第1缸体21a的外周部经由多个第1紧固螺栓25(仅图示一个)结合于支承框架24。

进而,第1轴承18的凸缘部23、第1缸体21a、第1中间分隔板16以及第2缸体21b,在密闭容器10的轴向上层叠,并且经由多个第2紧固螺栓26(仅图示一个)而连结为一体。

第2轴承19位于第3缸体21c的下方。第2轴承19具有朝向密闭容器10的周壁10a的内表面伸出的凸缘部27。凸缘部27以从下方覆盖第3缸体21c的内径部的方式与第3缸体21c的下表面重叠。

第2轴承19的凸缘部27、第3缸体21c、第2中间分隔板17以及第2缸体21b,在密闭容器10的轴向上层叠,并且经由多个第3紧固螺栓28(仅图示一个)而连结为一体。

因而,第1轴承18以及第2轴承19在密闭容器10的轴向上分离,并且第1至第3缸体21a、21b、21c、第1中间分隔板16以及第2中间分隔板17交替地位于第1轴承18与第2轴承19之间。

根据本实施方式,由第1缸体21a的内径部、第1中间分隔板16以及第1轴承18的凸缘部23包围的区域,规定出第1缸体室30。

由第2缸体21b的内径部、第1中间分隔板16以及第2中间分隔板17包围的区域,规定出第2缸体室31。

进而,由第3缸体21c的内径部、第2中间分隔板17以及第2轴承19的凸缘部27包围的区域,规定出第3缸体室32。

如图3所示,通过使第1中间分隔板16比第2中间分隔板17厚,由此从第1液压缸室30的沿着轴向的中间点到第2液压缸室31的沿着轴向的中间点为止的距离d1,大于从第2液压缸室31的沿着轴向的中间点到第3液压缸室32的沿着轴向的中间点为止的距离d2。

换言之,由于第2中间分隔板17比第1中间分隔板16薄,因此第2缸室31和第3缸室32被保持为在密闭容器10的轴向上相互接近的状态。

如图2以及图3所示,第1排出消音器33安装于第1轴承18。在第1排出消音器33与第1轴承18之间形成有第1消音室34。第1消音室34通过第1排出消音器33所具有的多个排气孔(未图示)而向密闭容器10的内部开口。

第2排出消音器35安装于第2轴承19。在第2排出消音器35与第2轴承19之间形成有第2消音室36。第2消音室36经由沿着密闭容器10的轴向延伸的未图示的排出通路而与第1消音室34连通。

如图2以及图3所示,旋转轴20同轴状地位于密闭容器10的中心轴线o1上。旋转轴20是具有第1轴颈部38、第2轴颈部39、第1至第3曲柄部40a、40b、40c、第1连结轴部41以及第2连结轴部42的一体构造物。

第1轴颈部38位于旋转轴20的沿着轴向的中间部,并且由第1轴承18支承为旋转自如。在从第1轴承18突出的旋转轴20的上端部连结有电动机11的转子14。

第2轴颈部39以位于旋转轴20的下端部的方式与第1轴颈部38同轴状地设置。第2轴颈部39由第2轴承19支承为旋转自如。

第1至第3曲柄部40a、40b、40c位于第1轴颈部38与第2轴颈部39之间,并且在旋转轴20的轴向上隔开间隔地排列。如图4所示,第1至第3曲柄部40a、40b、40c分别是具有圆形的截面形状的圆盘状的要素,在本实施方式中,沿着旋转轴20的轴向的厚度尺寸以及直径被设定为相同。

第1至第3曲柄部40a、40b、40c相对于通过第1轴颈部38以及第2轴颈部39的旋转中心的旋转轴20的旋转中心线o2偏心。即,如图4所示,第1至第3曲柄部40a、40b、40c相对于旋转轴20的旋转中心线o2的偏心方向,在旋转轴20的周向上均等地错开。

进而,第1至第3曲柄部40a、40b、40c相对于旋转轴20的旋转中心线o2的偏心量e相互均等。

如图3所示,第1曲柄部40a位于第1缸室30。第2曲柄部40b位于第2缸室31。第3曲柄部40c位于第3曲柄室32。

第1连结轴部41在旋转轴20的旋转中心线o2上位于第1曲柄部40a与第2曲柄部40b之间,并且贯通第1中间分隔板16的贯通孔16a。第2连结轴部42在旋转轴20的旋转中心线o2上位于第2曲柄部40b与第3曲柄部40c之间,并且贯通第2中间分隔板17的贯通孔17a。

环状的滚子45嵌合于第1曲柄部40a的外周面。滚子45追随旋转轴20而在第1缸室30内偏心旋转,并且滚子45的外周面的一部分与第1缸体21a的内径部的内周面能够滑动地线接触。

滚子45的上端面与第1轴承18的凸缘部23的下表面能够滑动地接触。滚子45的下端面与第1中间分隔板16的上表面能够滑动地接触。由此,第1缸室30的气密性得到确保。

环状的滚子46嵌合于第2曲柄部40b的外周面。滚子46追随旋转轴20而在第2缸室31内偏心旋转,并且滚子46的外周面的一部分与第2缸体21b的内径部的内周面能够滑动地线接触。

滚子46的上端面与第1中间分隔板16的下表面能够滑动地接触。滚子46的下端面与第2中间分隔板17的上表面能够滑动地接触。由此,第2缸室31的气密性得到确保。

环状的滚子47嵌合于第3曲柄部40c的外周面。滚子47追随旋转轴20而在第3缸室32内偏心旋转,并且滚子47的外周面的一部分与第3缸体21c的内径部的内周面能够滑动地线接触。

滚子47的上端面与第2中间分隔板17的下表面能够滑动地接触。滚子47的下端面与第2轴承19的凸缘部27的上表面能够滑动地接触。由此,第3缸室32的气密性得到确保。

根据本实施方式,滚子45、46、47具有比旋转轴20的第1连结轴部41以及第2连结轴部42大的内径。

如在图6中以第2缸室31为代表而表示的那样,第1至第3缸室30、31、32分别由叶片50划分为吸入区域r1和压缩区域r2。因此,当滚子45、46、47在第1至第3缸室30、31、32内偏心旋转时,各缸室30、31、32的吸入区域r1以及压缩区域r2的容积发生变化。

在第1缸体21a的内部形成有与第1缸体室30的吸入区域r1相连的第1连接口51a。第1连接口51a在第1缸体21a的侧面开口。在第2缸体21b的内部形成有与第2缸体室31的吸入区域r1相连的第2连接口51b。第2连接口51b在第2缸体21b的侧面开口。第1以及第2连接口51a、51b的开口端在密闭容器10的轴向上隔开间隔地排列。

如图2所示,筒状的储液器8以垂直立起的姿势附设在密闭容器10的旁边。储液器8的底部位于压缩机构部12的上端附近。

储液器8具有将液相制冷剂被分离出的气相制冷剂分配给压缩机构部12的第1至第3缸室30、31、32的第1吸入管52a以及第2吸入管52b。第1以及第2吸入管52a、52b贯通储液器8的底部而被引导至储液器8的外部。

第1吸入管52a在储液器8的下方朝向密闭容器10的周壁10a弯曲成弯头状。第1吸入管52a的前端部贯通密闭容器10的周壁10a而与第1缸体21a的第1连接口51a连接。

第2吸入管52b的直径大于第1吸入管52a的直径,并且在第1吸入管52a的下方朝向密闭容器10的周壁10a弯曲成弯头状。第2吸入管52b的前端部贯通密闭容器10的周壁10a而与第2缸体21b的第2连接口51b连接。

将第2缸室31与第3缸室32之间进行分隔的第2中间分隔板17,具有与第2缸体21b的第2连接口51b连通的制冷剂分配口53。制冷剂分配口53经由形成于第3缸体21c的导入通路54而与第3缸室32连通。

进而,如图3所示,在第1轴承18的凸缘部23设置有在第1缸室30的压缩区域r2的压力达到规定值时打开的第1排出阀56。第1排出阀56的排出侧与第1消音室34连通。

在第1中间分隔板16设置有在第2缸室31的压缩区域r2的压力达到规定值时打开的第2排出阀57。第2排出阀57的排出侧经由设置在第1中间分隔板16的内部以及第1缸体21a的内部的未图示的排出通路而与第1消音室34连通。

在第2轴承19的凸缘部27设置有在第3缸室32的压缩区域r2的压力达到规定值时打开的第3排出阀58。第3排出阀58的排出侧与第2消音室36连通。

在这样的3缸型旋转式压缩机2中,当通过电动机11使旋转轴20旋转时,滚子45、46、47追随第1至第3曲柄部40a、40b、40c而在第1至第3缸室30、31、32内偏心旋转。由此,第1至第3缸室30、31、32的吸入区域r1以及压缩区域r2的容积发生变化,储液器8内的气相制冷剂被从第1以及第2吸入管52a、52b吸入到第1至第3缸室30、31、32的吸入区域r1。

从第1吸入管52a吸入到第1缸室30的吸入区域r1的气相制冷剂,在吸入区域r1向压缩区域r2转移的过程中被逐渐压缩。在气相制冷剂的压力达到预先决定的值的时刻,第1排出阀56打开,在第1缸室30中被压缩的气相制冷剂向第1消音室34排出。

从第2吸入管52b引导至第2缸体21b的第2连接口51b的气相制冷剂的一部分,被吸入到第2缸室30的吸入区域r1。被引导至第2连接口51b的剩余的气相制冷剂,经由第2中间分隔板17的制冷剂分配口53以及第3缸体21c的导入通路54而被吸入到第3缸室31的吸入区域r1。

被吸入到第2缸室31的吸入区域r1的气相制冷剂,在吸入区域r1向压缩区域r2转移的过程中被逐渐压缩。在气相制冷剂的压力达到预先决定的值的时刻,第2排出阀57打开,在第2缸室31中被压缩的气相制冷剂经由排出通路而被引导至第1消音室34。

被吸入到第3缸室32的吸入区域r1的气相制冷剂,在吸入区域r1向压缩区域r2转移的过程中被逐渐压缩。在气相制冷剂的压力达到预先决定的值的时刻,第3排出阀58打开,在第3缸室32中被压缩的气相制冷剂向第2消音室36排出。排出到第2消音室36的气相制冷剂通过排出通路而被引导至第1消音室34。

在本实施方式中,第1至第3曲柄部40a、40b、40c以使偏心方向在旋转轴20的周向上均等地错开的方式形成。因此,在第1至第3缸室30、31、32中被压缩的气相制冷剂被排出的定时存在相同的相位差。

在第1至第3缸室30、31、32中被压缩的气相制冷剂在第1消音室34中汇合,并且从第1排出消音器33的排气孔连续地排出到密闭容器10的内部。排出到密闭容器10的内部的气相制冷剂,在通过了电动机11之后从排出管10b向四通阀3引导。

另一方面,在3缸型旋转式压缩机2中,滚子45、46、47在第1至第3缸室30、31、32内偏心旋转,由此使各缸室30、31、32的吸入区域r1以及压缩区域r2的容积变化而对气相制冷剂进行压缩。

因此,对于使滚子45、46、47偏心旋转的旋转轴20施加与第1至第3缸室30、31、32内的压力变化相伴随的负载,无法避免在旋转轴20中产生扭矩变动。扭矩变动成为3缸型旋转式压缩机2的振动、噪音的主要原因,因此需要尽量将其抑制得较小。

图7是表示在将旋转轴20的第1至第3曲柄部40a、40b、40c的偏心方向的角度差θ设为110°、120°、130°的情况下,与旋转轴20的旋转角相对的扭矩变动率的特性图。

如图7所示,角度差θ为110°时的扭矩变动率为38.8%,角度差θ为120°时的扭矩变动率为27.1%,角度差θ为130°时的扭矩变动率为40.4%。虽未图示,但角度差θ为140°时的扭矩变动率为54.2%。

旋转式压缩机的扭矩变动率通常优选为50%以下。因此,在本实施方式中,第1至第3曲柄部40a、40b、40c的偏心方向相对于旋转轴20的旋转中心线o2在旋转轴20的周向上在110°~130°(120°±10°)的范围内错开,特别是角度差θ优选设为扭矩变动率最小的120°。

根据本实施方式,在第2缸体21b连接有与储液器8相连的第2吸入管52b,在第2缸体21b的第2缸体室31中被压缩的气相制冷剂向第1中间分隔板16内部的排出通路排出。

此时,将第1缸室30与第2缸室31之间进行分隔的第1中间分隔板16,形成得比将第2缸室31与第3缸室32之间进行分隔的第2中间分隔板17厚,因此能够充分确保第1中间分隔板16内部的排出通路的容积。

与此同时,由于第2排出阀57设置在位于第2缸室31上方的第1中间分隔板16,因此从第2缸室31到位于压缩机构部12的最上部的第1消音室34的排气孔为止的路径长度变短。因此,与第1中间分隔板16内部的排出通路的容积较大的情况相结合,能够将在由第2缸室31压缩的气相制冷剂到达第1消音室34为止的期间中产生的气相制冷剂的排出损失抑制得尽量少。

进而,由于夹设在第2缸室31与第3缸室32之间的第2中间分隔板17比第1中间分隔板16薄,因此能够缩短从连接有第2吸入管52b的第2缸体21b到第3缸室32为止的距离。因此,能够将在从第2吸入管52b引导至第2缸体21b的第2连接口51b的气相制冷剂、通过第2中间分隔板17的制冷剂分配口53以及第3缸体21c的导入通路54而到达第3缸体室32为止的期间中产生的气相制冷剂的吸入损失抑制得尽量少。

并且,通过将第2吸入管52b与位于第3缸体21c上方的第2缸体21b连接,由此能够缩短将储液器8与压缩机构部12之间进行连结的第2吸入管52b的全长。其结果,能够将在气相制冷剂通过第2吸入管32b时产生的吸入损失抑制得尽量少。

因此,尽管第2缸室31和第3缸室32共用一根第2吸入管52b,也能够将从储液器8返回的气相制冷剂在第2缸室31以及第3缸室32中高效地压缩并使其排出到密闭容器10的内部。

接着,对压缩机构部12的旋转轴20以及滚子46的尺寸、形状进行说明。

图4表示从轴向观察旋转轴20时的第1曲柄部40a、第2曲柄部40b以及第3曲柄部40c的相对位置关系、以及与旋转轴20的旋转中心线o2正交的方向的第1连结轴部41的截面形状。

如图4所示,第1曲柄部40a的中心c1相对于旋转轴20的旋转中心线o2偏移偏心量e。同样,第2曲柄部40b的中心c2相对于旋转轴20的旋转中心线o2向与第1曲柄部40a的偏心方向相反侧偏移偏心量e。

在本实施方式中,跨在第1曲柄部40a与第2曲柄部40b之间的第1连结轴部41贯通比第2中间分隔板17厚的第1中间分隔板16,因此轴长比第2连结轴部42长。

因此,第1连结轴部41通过使与旋转轴20的旋转中心线o2正交的方向的截面形状成为图4所示那样的大致树叶形状,由此能够确保足够的刚性。具体而言,第1连结轴部41具有第1外表面s1、第2外表面s2以及第3外表面s3。

第1外表面s1相对于旋转轴20的旋转中心线o2位于第1曲柄部40a的偏心方向的相反侧,并且比第1曲柄部40a的外周面向旋转轴20的旋转中心线o2侧稍微偏置。进而,第1外表面s1由与第1曲柄部40a的中心c1同轴的圆筒面构成,第1外表面s1的半径比第1轴颈部38以及第2轴颈部39的半径大。

第2外表面s2相对于旋转轴20的旋转中心线o2位于第2曲柄部40b的偏心方向的相反侧,并且比第2曲柄部40b的外周面向旋转轴20的旋转中心线o2侧稍微偏置。进而,第2外表面s2由与第2曲柄部40b的中心c2同轴的圆筒面构成,第2外表面s2的半径比第1轴颈部38以及第2轴颈部39的半径大。

在本实施方式中,第1外表面s1的沿着周向的一端与第2外表面s2的沿着周向的一端相互对接,而规定出第1连结轴部41的沿着轴向延伸的边缘部60。换言之,边缘部60是第1外表面s1的一端与第2外表面s2的一端相交的交点。

第3外表面s3为,在相对于边缘部60而将旋转轴20的旋转中心线o2夹着之间的相反侧,跨在第1外表面s1与第2外表面s2之间。即,如图4所示,在将使第1外表面s1延长时的假想延长线s1a与使第2外表面s2延长时的假想延长线s2a相交的交点设为p时,第3外表面s3位于交点p与旋转轴20的旋转中心线o2之间,并且由与旋转轴20的旋转中心线o2同轴的圆筒面构成。

交点p位于对第1连结轴部41的截面形状进行规定的大致树叶形状的沿着长轴z的方向的一端。进而,作为交点的边缘部60,位于对第1连结轴部41的截面形状进行规定的大致树叶形状的沿着长轴z的方向的另一端。

如图4所示,如果将从位于大致树叶形状的沿着长轴z的方向的一端的交点p到旋转轴20的旋转中心线o2为止的距离设为l1,将从位于长轴z的另一端的边缘部(交点)60到旋转轴20的旋转中心线o2为止的距离设为l2,将从第3外表面s3到旋转轴20的旋转中心线o2为止的距离设为l3,则l1、l2、l3满足如下关系:

l1>l3≥l2。

在本实施方式中,通过将第1曲柄部40a与第2曲柄部40b之间的偏心方向的角度差θ设为120°,由此在上述l1与l2之间产生差异,例如在第1连结轴部41仅由第1外表面s1和第2外表面s2形成的情况下,第1连结轴部41的中心从旋转轴20的旋转中心线o2偏心上述差异的量。当第1连结轴部41的中心偏心时,连结轴部41的重心位置从旋转轴20的旋转中心线o2偏离,旋转轴20的平衡变差。

然而,本实施方式的第1连结轴部41具有跨在第1外表面s1与第2外表面s2之间的第3外表面s3,该第3外表面s3位于交点p与旋转中心线o2之间。因此,能够使第1连结轴部41的重心位置靠向旋转轴20的旋转中心线o2侧。

另外,在使上述l3比l2稍大的情况下,能够增大第1连结轴部41的刚性。

进而,如果将角度差θ设为120°,则与将角度差θ设为180°的情况相比较,能够增大与第1连结轴部41的长轴z的方向正交的第1连结轴部41的宽度尺寸tmax。

图5中的(a)表示将角度差θ设为120°时的第1连结轴部41的宽度尺寸tmax,图5中的(b)表示将角度差θ设为180°时的第1连结轴部41的宽度尺寸tmax。在将第1曲柄部40a的直径、第2曲柄部40b的直径、第1连结轴部41的第1外表面s1和第2外表面s2的直径以及偏心量e设为恒定的情况下,在将角度差θ设为120°的情况下,能够增大第1连结轴部41的宽度尺寸tmax,而第1连结轴部41的刚性相应地提高。

如图3所示,根据本实施方式,旋转轴20的从第2曲柄部40b的沿着轴向的中间点到第3曲柄部40c的沿着轴向的中间点为止的距离d3,比从第2缸室31的沿着轴向的中间点到第3缸室32的沿着轴向的中间点为止的距离d2短。

旋转轴20的从第1曲柄部40a的沿着轴向的中间点到第2曲柄部40b的沿着轴向的中间点为止的距离d4,比从第1缸室30的沿着轴向的中间点到第2缸室31的沿着轴向的中间点为止的距离d1长。

进而,如图8中的(a)所示,嵌合于第1至第3曲柄部40a、40b、40c的滚子45、46、47的沿着轴向的长度h1,比第1至第3曲柄部40a、40b、40c的沿着轴向的长度h2长。并且,滚子45、46、47的沿着轴向的长度h1比旋转轴20的第1连结轴部41的长度h3长。

根据本实施方式,第1连结轴部41的第1外表面s1比第1曲柄部40a的外周面向旋转轴20的旋转中心线o2侧稍微偏置。同样,第1连结轴部41的第2外表面s2比第2曲柄部40b的外周面向旋转轴20的旋转中心线o2侧稍微偏置。因此,能够将嵌合于第2曲柄部40b的外周面的滚子46从第1曲柄部40a侧通过第1连结轴部41的外侧而引导至第2曲柄部40b。

此时,由于滚子46的沿着轴向的长度h1比第1连结轴部41的长度h3长,因此在通过了第1曲柄部40a的滚子46到达第1连结轴部41的外侧时,滚子46的下端面与第2曲柄部40b的上端面抵接。因而,在该情况下难以直接使滚子46从第1连结轴部41向第2曲柄部40b的方向移动。

因此,在本实施方式中,在滚子46的内径部的沿着轴向的两端的开口边缘分别设置有倒角部61a、61b。由于倒角部61a、61b的存在,滚子46的开口边缘成为遍及整周向使内径增大的方向被倾斜地切除的形状。

另外,在本实施方式中,由于使所有滚子45、46、47都成为共通零件,因此在其他滚子45、47的内径部的开口边缘也设置有同样的倒角部61a、61b。

接着,参照图8对在旋转轴20的第2曲柄部40b的外周面上安装滚子46的作业进行说明。图8中的(a)~图8中的(d)依次表示将滚子46从第1曲柄部40a通过第1连结轴部41的外侧而安装到第2曲柄部40b的外周面上为止的作业工序。

图8中的(a)表示使从旋转轴20的第1轴颈部38侧插入的滚子46向第1曲柄部40a的外侧移动了的状态。滚子46在内径部的开口边缘具备倒角部61a、61b,因此在使滚子46从第1轴颈部38向第1曲柄部40a的方向移动时,能够避免滚子46的内径部的开口边缘与第1曲柄部40a的外周面干涉。因此,能够容易地使滚子46从第1轴颈部38朝向第1曲柄部40a移动。

图8中的(b)表示使滚子46从第1曲柄部40a向第1连结轴部41的外侧移动了的状态。在本实施方式中,第1连结轴部41的第1外表面s1比第1曲柄部40a的外周面向旋转轴20的旋转中心线o2侧稍微偏置。因此,在使滚子46从第1曲柄部40a向第1连结轴部41的外侧移动时,能够避免滚子46的内径部与第1外表面s1干涉。

此时,由于滚子46的沿着轴向的长度h1比第1连结轴部41的长度h3长,因此在使滚子46向第1连结轴部41的外侧移动了的状态下,滚子46的下端面与第2曲柄部40b的上端面抵接,并且滚子46的上端面比第1曲柄部40a的下端面稍微向上方伸出。

因而,在该情况下难以直接使滚子46从第1连结轴部41向第2曲柄部40b的方向移动。在本实施方式中,由于在滚子46的内径部的开口边缘形成有倒角部61a、61b,因此在滚子46到达第1连结轴部41的外侧的时刻,如图8中的(b)所示,使滚子46相对于旋转轴20倾斜。

由此,滚子46的内径部中的与第1连结轴部41的第2外表面s2相面对的部分位于比第1曲柄部40a靠下方的位置,并且在滚子46的内径部的内周面与第1连结轴部41的第2外表面s2之间产生间隙g。进而,第1曲柄部40a的位于第1连结轴部41侧的外周边缘进入到滚子46的倒角部61a。

图8中的(c)表示使在第1连结轴部41的外侧倾斜了的滚子46沿着旋转轴20的径向移动了的状态。滚子46的内径部的内周面向接近第1连结轴部41的第2外表面s2的方向移动,滚子46的上端面的一部分进入到第1曲柄部40a的下方。与此同时,第2曲柄部40b的位于第1连结轴部41侧的外周边缘进入到滚子46的倒角部61b。其结果,滚子46在第1连结轴部41的外侧位于第2曲柄部40b的正上方。

图8中的(d)表示使滚子46从第1连结轴部41向第2曲柄部40b移动了的状态。在滚子46的上端面的一部分进入到第1曲柄部40a的下方的状态下,当消除滚子46的倾斜时,滚子46与第2曲柄部40b被相互同轴状地对位。

因此,如果使滚子46从第1连结轴部41侧向第2曲柄部40b移动,则转移到滚子46与第2曲柄部40b的外周面嵌合的状态。

根据第1实施方式,通过将第1曲柄部40a与第2曲柄部40b之间的偏心方向的角度差θ设定在110°~130°(120°±10°)的范围内,由此能够抑制旋转轴20的扭矩变动,并且能够充分确保第1连结轴部41的宽度尺寸tmax。由此,沿着与旋转轴20的轴向正交的方向的第1连结轴部41的截面积增大。

而且,第1连结轴部41的长度h3比滚子46的沿着轴向的长度h1短,因此与第1连结轴部41的截面积增大的情况相结合,能够确保跨在第1曲柄部40a与第2曲柄部40b之间的第1连结轴部41的刚性。

其结果,能够抑制3缸型旋转式压缩机2运转时的旋转轴20的轴偏摆,能够将3缸型旋转式压缩机2的振动以及噪音抑制得较少。

进而,第1连结轴部41具有由第1外表面s1、第2外表面s2以及第3外表面s3规定的截面形状,因此能够使第1连结轴部41的重心位置尽量靠近旋转轴20的旋转中心线o2侧。

因而,旋转轴20的平衡变得良好,提高这一点也能够抑制旋转轴20的轴偏摆,而有助于降低3缸型旋转式压缩机2的振动。

根据本实施方式,第1连结轴部41的第1外表面s1由与第1曲柄部40a的中心c1同轴的圆筒面构成,第2外表面s2由与第2曲柄部40b的中心c2同轴的圆筒面构成。因此,能够将与第2曲柄部40b的外周面嵌合的滚子46从第1曲柄部40a的方向通过第1连结轴部41的外侧而引导至第2曲柄部40b,并且能够提高第1连结轴部41的刚性。

并且,第1连结轴部41的第3外表面s3由与旋转轴20的第1轴颈部38同轴的圆筒面构成。因此,例如在使用车床对第1曲柄部40a、第2曲柄部40b以及第1轴颈部38实施切削加工时,对于第1外表面s1、第1外表面s2以及第3外表面s3能够分别通过相同的工序来实施切削加工。

因而,对于旋转轴20的加工性变得良好,相应地能够降低旋转轴20的制造成本。

在本实施方式中,考虑到滚子46的组装时的操作性,而使第1外表面s1比第1曲柄部40a的外周面向旋转轴20的旋转中心线o2侧配置,并且将第2外表面s2形成在比第2曲柄部40b的外周面向旋转轴20的旋转中心线o2侧配置了的位置,但并不限定于此。

例如,也可以将第1外表面s1形成在与第1曲柄部40a的外周面相同的面上,并且将第2外表面s2形成在与第2曲柄部40b的外周面相同的面上。

根据本实施方式,旋转轴20的从第1曲柄部40a的沿着轴向的中间点到第2曲柄部40b的沿着轴向的中间点为止的距离d4,比从第1缸室30的沿着轴向的中间点到第2缸室31的沿着轴向的中间点为止的距离d1长。

因此,在使滚子46从第1曲柄部40a的方向通过第1连结轴部41的外侧而朝向第2曲柄部40b移动时,滚子46难以勾挂于第1连结轴部41。因而,能够使滚子46容易地移动,将滚子46向旋转轴20组装时的操作性变得良好。

进而,在本实施方式中,旋转轴20的从第2曲柄部40b的沿着轴向的中间点到第3曲柄部40c的沿着轴向的中间点为止的距离d3,比从第2缸室31的沿着轴向的中间点到第3缸室32的沿着轴向的中间点为止的距离d2短。因此,在对气相制冷剂进行压缩时,即使旋转轴20要以第1轴承18以及第2轴承19为起点进行挠曲,也能够降低作用于该旋转轴20的弯曲应力。

其结果,能够防止旋转轴20的轴偏摆、以及与轴偏摆相伴随的滚子46、47的局部磨损、密封性能降低,能够得到高性能且高可靠性的3缸型旋转式压缩机2。

在上述实施方式中,将第1连结轴部41的第3外表面s3相对于旋转轴20的旋转中心线o2设置在大致树叶形状的沿着长轴方向的一侧。但是,本发明并不限定于此,例如也可以在第1连结轴部41的沿着长轴方向的两个端部设置由与第1轴颈部38同轴的圆筒面构成的一对第3外表面s3,而省略边缘部60。

并且,第1连结轴部41的第1外表面s1和第2外表面s2不需要遍及沿着周向的全长而弯曲成圆弧状。只要至少对tmax进行规定的第1外表面s1的中间部和第2外表面s2的中间部弯曲成圆弧状即可。

进而,在上述实施方式中,以叶片追随滚子的偏心旋转而在向缸室进入或从缸室后退的方向上往复移动的一般的旋转式压缩机为例进行了说明,但是,例如在从滚子的外周面朝向径向外侧一体地突出有叶片的所谓摆动型的旋转式压缩机中也能够同样地实施。

对本发明的几个实施方式进行了说明,但这些实施方式是作为例子而提出的,并不意图限定发明的范围。这些新的实施方式能够以其他各种方式实施,在不脱离发明的主旨的范围内能够进行各种省略、置换、变更。这些实施方式及其变形包含在发明的范围、主旨内,并且包含在权利要求书所记载的发明及其均等的范围内。

符号的说明

2:旋转式压缩机;4:室外热交换器;5:膨胀装置;6:室内热交换器;7:循环回路;16:第1中间分隔板;17:第2中间分隔板;18:第1轴承;19:第2轴承;20:旋转轴;21a:第1缸体;21b:第2缸体;21c:第3缸体;30:第1缸室;31:第2缸室;32:第3缸室;38:第1轴颈部;39:第2轴颈部;40a:第1曲柄部;40b:第2曲柄部;40c:第3曲柄部;41:第1连结轴部;42:第2连结轴部;45、46、47:滚子;60:边缘部(交点);p:交点;s1:第1外表面;s2:第2外表面;s3:第3外表面;o2:旋转中心线。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1