旋转翼以及具备该旋转翼的离心压缩机的制作方法

文档序号:23184115发布日期:2020-12-04 14:13阅读:134来源:国知局
旋转翼以及具备该旋转翼的离心压缩机的制作方法

本发明涉及旋转翼以及具备该旋转翼的离心压缩机。



背景技术:

在专利文献1中,记载了在充分确保叶轮的构造强度的基础上使工作区域向低流量侧扩大的离心压缩机。在该离心压缩机中,在设置在叶轮上的各叶片的压力面上,形成有平缓地弯曲的曲面部,以使得后缘的边缘部的中心靠近负压面。

现有技术文献

专利文献

专利文献1:(日本)特开2013-15101号公报



技术实现要素:

发明所要解决的技术问题

通过本发明的发明人的锐意研究可知,如果在叶片的压力面侧形成专利文献1所公开的曲面部,虽然能够在充分确保叶轮的构造强度的基础上使工作区域向低流量侧扩大,但压力比会降低。另一方面,可知如果在叶片的负压面侧形成曲面部,则能够提高压力比。

鉴于上述情况,本公开至少一实施方式的目的在于,提供一种能够提高压力比的旋转翼以及具备该旋转翼的离心压缩机。

用于解决技术问题的技术方案

(1)本发明至少一实施方式的旋转翼具备轮毂和在所述轮毂上设置的多个叶片,其中,所述多个叶片中的各叶片包含负压面、压力面、前缘、后缘、翼梢侧缘和轮毂侧缘,

所述负压面包含第一曲面部,该第一曲面部在与所述后缘连接的区域中所述叶片的叶片高度方向的一部分区域即第一区域,朝向所述后缘呈凸状弯曲而使所述后缘靠近所述压力面侧。

根据上述(1)的结构,沿着负压面从前缘朝向后缘流通的流体的流动方向沿着第一曲面部大幅弯曲,在通过后缘附近时与旋转翼的旋转方向近似。通过这样的空气的流动方向的变化,对流体的旋转翼所做的功会增加,因而能够提高由旋转翼的旋转实现的压力比。

(2)在一些实施方式中,在上述(1)的结构的基础上,所述第一曲面部与所述轮毂侧缘连接。

(3)在一些实施方式中,在上述(2)的结构的基础上,所述第一曲面部形成于在从所述轮毂侧缘朝向所述翼梢侧缘的方向上自所述轮毂侧缘为叶片高度的80%以下的区域。

根据本发明的发明人的锐意研究,通过在负压面上形成第一曲面部而实现的提高压力比的效果会随着第一曲面部靠近轮毂侧缘附近而变大。根据上述(2)和(3)的结构,由于第一曲面部形成在轮毂侧缘附近,因而能够进一步提高压力比的提高效果。

(4)在一些实施方式中,在上述(1)至(3)的任一结构的基础上,所述第一曲面部构成为,在与所述叶片的子午面垂直的剖面中,所述第一曲面部的切线与将所述前缘和所述后缘连接的直线即翼弦线所成的角度朝向所述后缘增加。

根据上述(4)的结构,沿着负压面从前缘朝向后缘流通的流体的流动方向沿着第一曲面部流动而进一步大幅弯曲,在通过后缘附近时与旋转翼的旋转方向更为近似。通过这样的空气的流动方向的变化,对流体的旋转翼所做的功进一步增加,因而能够进一步提高由旋转翼的旋转实现的压力比。

(5)在一些实施方式中,在上述(1)至(4)的任一结构的基础上,所述压力面包含第二曲面部,该第二曲面部在与所述后缘连接的区域中所述叶片的叶片高度方向的一部分区域即第二区域,朝向所述后缘呈凸状弯曲而使所述后缘靠近所述负压面侧。

根据上述(5)的结构,流体在沿着在压力面流通时产生的边界层在第二曲面部上缩小而助长沿着压力面的流动,因而能够提高旋转翼的旋转的压缩效率。

(6)在一些实施方式中,在上述(5)的结构的基础上,所述第二曲面部与所述翼梢侧缘连接。

(7)在一些实施方式中,在上述(6)的结构的基础上,所述第二曲面部形成于在从所述翼梢侧缘朝向所述轮毂侧缘的方向上自所述翼梢侧缘为叶片高度的70%以下的区域。

通过本发明的发明人的锐意研究,通过在压力面上形成第二曲面部而实现的提高旋转翼的旋转的压缩效率的效果,随着第二曲面部靠近翼梢侧缘附近而变大。根据上述(6)和(7)的结构,由于第二曲面部在翼梢侧缘附近形成,因而能够进一步提高旋转翼的旋转的压缩效率的提高效果。

(8)在一些实施方式中,在上述(5)至(7)的任一结构的基础上,在与所述叶片的子午面垂直的剖面中,所述第二曲面部的所述后缘处的切线与将所述前缘和所述后缘连接的直线即翼弦线所成的角度小于所述第一曲面部的所述后缘处的切线与所述翼弦线所成的角度。

根据上述(8)的结构,与第二曲面部相比,第一曲面部成为大幅弯曲的结构。因此,通过沿着第二曲面部流动的流体,能够减低在叶片的后缘附近形成的边界层从而提高旋转翼的旋转的压缩效率。

(9)在一些实施方式中,在上述(5)至(8)的任一结构的基础上,所述后缘从所述轮毂侧缘朝向所述翼梢侧缘为直线状。

根据上述(9)的结构,后缘从轮毂侧缘朝向翼梢侧缘为直线状,因而能够提高叶片的可制造性。

(10)在本发明的至少一实施方式的离心压缩机中,

具备上述(1)至(9)中任一项所述的旋转翼。

根据上述(10)的结构,能够提高离心压缩机的压力比。

发明的效果

根据本公开的至少一实施方式,沿着负压面从前缘朝向后缘流通的流体的流动方向由于沿着第一曲面部流动而大幅弯曲,在通过后缘附近时变得与旋转翼的旋转方向近似。通过这样的空气的流动方向的变化,对流体的旋转翼所做的功会增加,因而能够提高由旋转翼的旋转实现的压力比。

附图说明

图1是具备本公开实施方式1的旋转翼的离心压缩机的子午面图。

图2是在本公开实施方式1的旋转翼中设置叶片的等跨距高度的剖视图。

图3是在本公开实施方式1的旋转翼中设置的叶片的后缘附近处的与子午面垂直的局部剖视图。

图4是表示通过cfd分析得到的空气的体积流量与压力比的关系的曲线图。

图5是表示通过cfd分析得到的使第一区域的范围发生变化时的滑动量的变化的曲线图。

图6是在本公开实施方式2的旋转翼中设置的叶片的后缘附近处的压力面侧的子午面图。

图7是沿着图6的vii-vii线的剖视图。

图8是在本公开实施方式2的旋转翼中设置的叶片的后缘附近的立体图。

图9是表示通过cfd得到的空气的体积流量与压缩效率的关系的曲线图。

图10是表示通过cfd分析得到的在图4的叶片(b)的负压面和压力面上形成的边界层处的流速分布的图。

图11是表示本公开实施方式2的旋转翼的第一曲面部和第二曲面部各自的弯曲形状的局部剖视图。

图12是表示通过cfd分析得到的使第二区域的范围发生变化时的边界层内流速的变化的曲线图。

图13是在本公开实施方式2的旋转翼中设置的叶片的变形例的后缘附近的正视图。

具体实施方式

以下,参照附图对本发明的几个实施方式进行说明。但是,本发明的范围并不限定于以下实施方式。以下实施方式所记载的构成部件的尺寸、材质、形状、相对配置等并非旨将本发明的范围仅限定于此,只不过是单纯的说明例。

以在涡轮增压器的离心压缩机中设置的旋转翼(叶轮)为例对以下所示的本公开的几个实施方式中的旋转翼进行说明。但是,本公开中的离心压缩机并不限于涡轮增压器的离心压缩机,也可是单独工作的任意的离心压缩机。并且,虽然没有具体地进行说明,本公开的旋转翼也包含在涡轮机和轴流泵中使用的旋转翼。需要说明的是,在以下说明中,由离心压缩机压缩的流体为空气,但可以置换为任意的流体。

[实施方式1]

如图1所示,离心压缩机1具有壳体2和在壳体2内以旋转轴线l为中心能够旋转地设置的叶轮3。叶轮3具有在周向上空出规定间隔地设置于轮毂5的流线形状的多个叶片4(在图1中仅示出一个叶片4)。各叶片4包含前缘4a、后缘4b、面向壳体2的翼梢侧缘4c和与轮毂5连接的轮毂侧缘4d。

在各叶片4的负压面10中,将与后缘4b连接的区域中、叶片4的叶片高度方向的一部分区域作为第一领域r1。如图2所示,各叶片4的负压面10包含第一曲面部11,该第一曲面部11在第一领域r1向后缘4b呈凸状弯曲以使得后缘4b靠近压力面侧20。在图2中,引出通过第一曲面部11的前缘4a的边缘部11a且与叶片4的中心线cl1的垂直的垂直线pl1。使从前缘4a到垂直线pl1的中心线cl1从垂直线pl1向后缘4b侧延长,将该延长的直线作为延长线el1,在第一区域r1,后缘4b相对延长线el1位于压力面20侧。

如图3所示,优选第一曲面部11的凸状的弯曲成为以下形状,即,相对于将前缘4a(参考图2)和后缘4b连接的直线即翼弦线cl2,第一曲面部11的切线所成的角度朝向后缘4b增加。也就是说,如果以第一曲面部11的切线tl1和比切线tl1更靠后缘4b侧的切线tl2相对于翼弦线cl2所成的角度分别为θ1和θ2,则优选θ1<θ2。

如果在各叶片4的负压面10的第一区域r1存在第一曲面部11,则沿着负压面10从前缘4a向后缘4b流通的空气的流动方向b沿着第一曲面部11流动而大幅弯曲,在通过后缘4b附近时与叶轮3(参考图1)的旋转方向a近似。通过这样的空气的流动方向的变化,叶轮3对空气所做的功增加,因此叶轮3的旋转所产生的压力比、即离心压缩机(参考图1)的压力比提高。

本发明的发明人通过cfd分析对由这样的第一曲面部11带来的效果进行了确认。其结果如图4所示。在图4的曲线图中,除了在负压面10上有第一曲面部11的实施方式1中的叶片(如(a)所示)之外,对于(b)所示的那样的在压力面20上有曲面部9的形态的叶片和(c)所示的那样的后缘4b附近的剖面具有大致椭圆形状的形态的叶片,表示了通过cfd分析得到的空气的体积流量与压力比的关系。根据该关系能够确认,相对于其他两个形态的叶片,在负压面10上具有第一曲面部11的实施方式1的叶片具有压力比的提高效果。

并且,发明人通过cfd分析对用于得到压力比的提高效果的第一区域r1的优选的范围进行了确认。其结果如图5所示。在图5的曲线图中,针对在负压面10具有第一曲面部11的实施方式1的叶片(如(a)所示),表示在从轮毂侧缘4d向翼梢侧缘4c方向上使第一区域r1自轮毂侧缘4d的高度h1与叶片的叶片高度h的比例(跨距高度,スパンハイト)(h1/h)、即第一区域r1的无量纲高度发生变化时的滑动量δcθ的变化。在这里,滑动量δcθ是压力比的指标,在图5的(a)至(c)各自的比较中,滑动量δcθ越小则压力比变得越大。

在图5的曲线图中进一步针对(b)所示的、在压力面20具有曲面部9的叶片,表示在从轮毂侧缘4d向翼梢侧缘4c的方向上使曲面部9自轮毂侧缘4d的高度h2与叶片的叶片高度h的比(h2/h)发生变化时的滑动量δcθ的变化,以及针对(c)所示的那样、后缘4b附近的剖面具有大致椭圆形状的形态的叶片,表示在从轮毂侧缘4d向翼梢侧缘4c的方向上使具有大致椭圆形状的剖面的部分8自轮毂侧缘4d的高度h3与叶片的叶片高度h的比例(h3/h)发生变化时的滑动量δcθ的变化。

根据图5的曲线图可知,如果使第一区域r1自轮毂侧缘4d的无量纲高度为80%以下,则相对于叶片(b)和叶片(c),叶片(a)的滑动量δcθ较小,即压力比变大。因此,可以认为如果使第一区域r1自轮毂侧缘4d的无量纲高度为80%以下,优选为70%以下,更优选的是50%以下,则具有提高压力比的效果。

[实施方式2]

接着,对实施方式2的旋转翼进行说明。相对于实施方式1,实施方式2的旋转翼在压力面20也形成了曲面部。需要说明的是,在实施方式2中,对于与实施方式1的构成部件相同的构成部件标注相同的附图标记,省略其详细说明。

如图6所示,在各叶片4的压力面20,将与后缘4b连接的区域中叶片4的叶片高度方向的一部分区域作为第二区域r2。如图7所示,各叶片4的压力面20包含第二曲面部21,该第二曲面部21在第二区域r2向后缘4b呈凸状弯曲,以使得后缘4b靠近负压面侧10。在图7中,引出通过第二曲面部21的前缘4a的边缘部21a且与叶片4的中心线cl1垂直的垂直线pl2。使从前缘4a到垂直线pl2的中心线cl1从垂直线pl2向后缘4b侧延长,将该延长的直线作为延长线el2,在第二区域r2,后缘4b相对延长线el2位于负压面10侧。

如图8所示,第一区域r1在负压面10以在叶片高度方向上从轮毂侧缘4d向翼梢侧缘4c延伸的方式形成,第二区域r2在压力面20以在叶片高度方向上从翼梢侧缘4c向轮毂侧缘4d延伸的方式形成。在叶片4的叶片高度方向上,在第一区域r1与第二区域r2之间形成分别向负压面10侧和压力面20侧呈凸状弯曲的曲面部,从而构成剖面具有大致椭圆形状的中间部分30。在从与后缘4b相对的方向观察叶片4时,后缘4b从轮毂侧缘4d到翼梢侧缘4c成为直线形状。其他结构与实施方式1相同。

根据本发明发明人进行的cfd分析,如在实施方式1中已经说明的那样,通过在负压面10形成第一曲面部11而具有提高离心压缩机1(参考图1)的压力比的效果(参照图4)。但是,本发明的发明人通过分别对图4的叶片(a)至(c)进行cfd分析而能够确认,如图9所示,取决于空气的体积流量,与其它两种形态的叶片相比,在叶片(a)中,叶轮3(参照图1)的旋转的压缩效率、即离心压缩机1的压缩效率会变低。另一方面能够确认,取决于空气的体积流量,在压力面形成曲面部的叶片(b)中,离心压缩机1的压缩效率最高。根据该情况,认为能够通过在压力面20形成曲面部来提高离心压缩机1的压缩效率。

在图10的(a)中,表示的是通过对图4的叶片(b)进行cfd分析而得到的在叶片的负压面10和压力面20上形成的边界层附近的流速分布的结果,在图10的(b)中,表示的是通过对图4的叶片(a)进行cfd分析得到的在叶片的负压面10和压力面20上形成的边界层附近的流速分布的结果。如图10的(a)所示,可知如果在各叶片4的压力面20的第二区域r2存在第二曲面部21,则在沿着压力面20从前缘4a(参照图1)向后缘4b流通时产生的边界层40在第二曲面部缩小而助长沿着压力面20的流动。另一方面,如图10(b)所示,即使在各叶片4的负压面10的第一区域r1存在第一曲面部11,也未在第一曲面部11看到边界层40的缩小。因此,可以认为能够通过在压力面20形成曲面部(第二曲面部21)来提高离心压缩机的压缩效率。

如图8所示,实施方式2中的叶片4在负压面10中与后缘4b连接的第一领域r1形成有第一曲面部11,并且在压力面20中与后缘4b连接的第二领域r2形成有第二曲面部21,因此能够与实施方式1同样地提高离心压缩机(参考图1)的压力比并且提高离心压缩机1的压缩效率。

如图11的(a)所示,在与叶片4的子午面垂直的剖面中,以第一曲面部11的后缘4b处的切线tl3与翼弦线cl2所成的角度为θ4b。如图11的(b)所示,在与叶片4的轴面垂直的剖面中,以第二曲面部21的后缘4b处的切线tl4与翼弦线cl2所成的角度为α4b。优选在第二曲面部21的凸状的弯曲中,α4b<θ4b。根据该结构,与沿着第二曲面部21流动的空气推压叶片4的力相比,利用沿着第一曲面部11流动的空气,能够减少在叶片4的后缘4b附近形成的边界层区域,因而叶轮3的压缩效率得以提高。

本发明的发明人通过cfd分析确认了用于得到压缩效率的提高效果的第二区域r2的优选范围。其结果如图12所示。在图12的曲线图中,针对图4的叶片(b)表示使第二区域r2的无量纲高度发生变化时的边界层内的空气的流速(边界层内流速)的变化。在图12的曲线图中进一步针对图4的叶片(a)表示使第一区域r1的无量纲高度发生变化时的边界层内流速的变化,针对图4的叶片(c)表示使具有大致椭圆形状剖面的部分8的无量纲高度发生变化时的边界层内流速的变化。

根据图12的曲线图可知,如果使第二区域r2自翼梢侧缘4c的无量纲高度为70%以下,则相对于叶片(a)和叶片(c),叶片(b)在边界层内流速较大。因此,可以认为如果是第二区域r2自翼梢侧缘4c的无量纲高度为70%以下、优选为40%以下、更优选的是30%以下,则具有提高压缩效率的效果。

在实施方式2中,如图8所示,在从与后缘4b相对的方向观察叶片4时,后缘4b从轮毂侧缘4b到翼梢侧缘4c成为直线形状,但并不限定于该形态。例如,如图13的(a)所示,后缘4b可以从轮毂侧缘4d到翼梢侧缘4c弯曲,或者如图13的(b)所示,可以成为使中间部分30具有叶片高度方向的厚度,使后缘4b成为将三个直线部分组合的构成。但是,如图8所示,如果采用后缘4b从轮毂侧缘4d至翼梢侧缘4c成为直线形状的构造,则能够提高叶片4的可制造性。

在实施方式1和2中,对叶片4为完整叶片(フルブレード)的情况进行了说明,但并不限于该形态。叶片4也可以是在两个完整叶片之间设置的分流叶片。

附图标记说明

1…离心压缩机、2…壳体、3…叶轮(旋转翼)、4…叶片、4a…前缘、4b…后缘、4c…翼梢侧缘、4d…轮毂侧缘、5…轮毂、8…具有大致椭圆形状的剖面的部分、9…曲面部、10…负压面、11…第一曲面部、11a…(第一曲面部的)边缘部、20…压力面、21…第二曲面部、30…中间部分、40…边界层、cl1…中心线、cl2…翼弦线、el1…延长线、el2…延长线、l…旋转轴线、pl1…垂直线、pl2…垂直线、r1…第一区域、r2…第二区域、tl1…切线、tl2…切线、tl3…切线、tl4…切线。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1