一种蒸汽喷射器及其结构优化方法与流程

文档序号:22963198发布日期:2020-11-19 21:24阅读:466来源:国知局
一种蒸汽喷射器及其结构优化方法与流程
本发明涉及蒸汽喷射器
技术领域
,具体涉及一种蒸汽喷射器及其结构优化方法。
背景技术
:在冬季采暖供热时需要用汽轮机中的蒸汽来进行加热,蒸汽的抽调影响供电所需的蒸汽量,容易造成发电量不足,现在通常采用限量用电的方法来解决用电压力。而火电厂中汽轮机排汽的直接排放造成了环境的污染,同时也造成了严重的热量损失,但是汽轮机乏汽的压力低、热量也低不能直接用于供暖加热。因此,需要设计一种将低温低压的蒸汽转换成中温中压的蒸汽,从而用于解决火电厂发电和供暖的问题,同时降低废气的排放量。技术实现要素:有鉴于此,本发明的目的是针对现有技术的不足,提供一种性能系数好、消耗气体少、合计合理、体积最小化、操作成本低的蒸汽喷射器,还提供了该蒸汽喷射器的结构优化方法。为达到上述目的,本发明采用以下技术方案:一种蒸汽喷射器,包括相互连通的接收室、混合室、扩压室,以及设置在所述接收室入口处的喷嘴,在所述接收室的下方设有进气口;所述混合室包括收缩段和过渡段,所述喷嘴包括进口段、渐缩段、喉部段和扩张段;所述过渡段和喉部段呈中空圆柱状。汽轮机中压缸的五段抽汽通过喷嘴进入蒸汽喷射器内部,乏汽通过接收室进气口进入蒸汽喷射器内部,使汽轮机中压缸的五段抽汽和乏汽在混合室混合形成中温中压的混合蒸汽,之后再经过扩压室排出,用于供暖。优选的,所述喷嘴的进口段直径为dp为130mm,其喉部段直径dp*为31.34mm,其扩张段末端直径dp1为80.52mm;所述混合室的收缩段始端直径d2为220mm,其过渡段的直径d3为179.14mm。优选的,所述喷嘴的渐缩段长度l1为101mm,其喉部段长度l2为35mm,其扩张段长度l3为126mm。优选的,所述混合室的收缩段长度l4为447.38mm,其过渡段长度l5为177.98mm。优选的,所述扩压室的长度l6为900mm,所述扩压室的后端直径dc为260mm。一种蒸汽喷射器的结构优化方法,包括以下步骤:(1)cfd数值模拟:采用icem软件利用设计好的蒸汽喷射器结构参数建立网格模型;再通过fluent软件对蒸汽喷射器的几何模型进行数值模拟;然后在特定工况下,保持其他结构参数不变,利用单因素分析法,通过数值模拟的方式分析喷嘴喉部段直径x1、扩张段末端直径x2、过渡段的直径x3、混合室的收缩段长度x4和过渡段长度x5五个结构参数对喷射器引射系数y的影响规律,记录每次数值模拟结果,并标记相对较优结构参数,得到性能参数以及云图;(2)建立目标函数模型:针对上述五个结构参数的数值模拟结果,按一定步长选择40组数值模拟数据,利用最小二乘法来最小化预估数据与实际数据之间误差的平方和,从而建立起五个结构参数和引射系数之间的非线性映射关系;y=f(x|a)=a1+a(x1)+a(x2)+a(x3)+a(x4)+a(x5)其中,其中,通过多元函数求极小值的方式求出个拟合系数的值;(3)结构优化计算:采用人工鱼群算法寻优求得最优结构(人工鱼状态)对应的最大引射系数值(食物浓度),在一定的结构参数范围内,建立起多变量单目标数学模型如下式,maxf(x1,x2,x3,x4,x5)以上述函数模型作为人工鱼群算法中的适应度函数y;其具体优化计算过程包括以下步骤:①参数初始化:对人工鱼的状态、鱼群规模m、视野范围visual、拥挤度δ、步长step、最大尝试次数ntry的参数进行初始化;②人工鱼根据当前状态优先选择执行聚群、追尾行为,判断目标位置的拥挤程度,若满足执行聚群和追尾行为的条件,则选择其中最优行为进行下一步;③若人工鱼感知到下一位置太过拥挤,不满足执行聚群、追尾行为的条件,则人工鱼执行觅食行为;④若人工鱼的尝试次数达到最大尝试次数ntry后仍不能满足移动条件,则执行随机行为;⑤更新人工鱼状态生成新鱼群;⑥评价所有人工鱼的状态和食物浓度,若优于公告牌上的值则将公告牌上的相应值替换为该人工鱼的状态和适应度值;⑦当算法迭代次数达到50次时算法结束,此时公告牌上的值即为最优值;否则执行步骤②。优选的,步骤②中执行聚群行为的条件为:设当前人工鱼位置为xi,食物浓度为yi,当前人工鱼视野范围内(dij<visual)人工鱼的数量为nf,寻找鱼群的中心位置xc和相应的食物浓度yc;若有yc/nf>δyi,则中心位置xc处人工鱼密度不大且食物浓度比较高,人工鱼由当前位置向中心位置xc靠近一步。优选的,步骤②中执行追尾行为的条件为:设人工鱼当前位置为xi,其相应位置处的食物浓度为yi,其视野范围内人工鱼的数量为nf,寻找当前视野范围内人工鱼的最优位置xmax,相应食物浓度为ymax;当yc/nf>δyi时,则证明xmax处食物浓度较高且人工鱼数量不多,此时人工鱼可以向xmax位置靠近一步。优选的,步骤④中ntry为10。本发明的有益效果是:蒸汽喷射器利用高压蒸汽引射低压蒸汽,使汽轮机乏汽转变为中温中压的蒸汽来加热热网循环水,从而减少机组用于采暖的蒸汽抽汽量,充分利用低品质乏汽来降低机组热耗,进而降低机组厂用电率以提高其向外供电的能力。机组在供暖期无需调整运行背压,利用了包括给水泵汽轮机排汽、大机排汽在内的低品质热源,热效率较高。其既减少了热电厂的冷源损失,又解决了城镇发展中的供暖问题。本发明的优化方法操作简单,精密度高,实现了蒸汽喷射器结构的进一步优化。采用该优化方法优化制得的蒸汽喷射器结构尺寸设计更加合理,结构实现最小化,且其引射系数提高了2.5%,有效降低了气体消耗量,使操作成本最小化。附图说明图1为蒸汽喷射器的结构示意图;图2为喷嘴的结构示意图;图3为cfd数值模拟流程;图4为数值模型的残差图;图5为喷射器出口质量流量收敛曲线图;图6为人工鱼群算法流程图;图7为适应度函数的适应度曲线;图8为混合流体出口质量流量曲线。图中:1接收室,2收缩段,3过渡段,4混合室,5扩压室,6喷嘴,7进口段,8渐缩段,9喉部段,10扩张段。具体实施方式下面结合附图和实施例对本发明作进一步描述。实施例1如图1和2所示,一种蒸汽喷射器,包括相互连通的接收室1、混合室4、扩压室5,以及设置在所述接收室1入口处的喷嘴6,在所述接收室1的下方设有进气口;所述混合室4包括收缩段2和过渡段3,所述喷嘴6包括进口段7、渐缩段8、喉部段9和扩张段10;所述过渡段3和喉部段9呈中空圆柱状。该蒸汽喷射器的结构优化方法,针对喷嘴喉部段直径x1、扩张段末端直径x2、过渡段的直径x3、混合室的收缩段长度x4和过渡段长度x5五个结构参数进行优化。包括以下步骤:(1)cfd数值模拟:如图3所示,cfd数值模拟过程分为三个阶段:前处理、求解流场和后处理,在前处理阶段:采用icem软件利用设计好的蒸汽喷射器结构参数建立网格模型。表1给出了蒸汽喷射器结构的设计参数。表1结构名称数值/mm喷嘴入口直径dp130喷嘴喉部直径dp*32喷嘴出口直径dp190喷嘴渐缩段长度l1101喷嘴喉部长度l235喷嘴渐扩段长度l3126混合室收缩段长度l4500混合室入口直径d2220混合室喉部直径d3150混合室等截面段长度l5300扩压室直径dc260扩压室长度l6900总长1962求解流场阶段:通过fluent软件对蒸汽喷射器的几何模型进行数值模拟;具体步骤包括:a.启动fluent软件。b.读入网格,检查网络:将前处理阶段建立的网格模型导入到fluent软件中。c.定义求解模型和边界条件:在求解之前先设置合适的求解器、湍流模型、求解方法、流体的物理性质以及边界条件。在setup栏中选择基于压力、稳态求解器,设置二维轴对称模型,湍流模型选用标准k-ε湍流模型(standardk-epsilon),近壁面选用标准壁面函数(standardwallfunctions),流体的物理性质选择水蒸汽,密度设为理想气体密度。蒸汽喷射器的入口边界和出口边界分别设为压力入口和压力出口,输入蒸汽喷射器的工况参数,并设置水力直径和湍流强度,其中水力直径为喷射器出口和入口的直径,湍流强度为5。表2给出了蒸汽喷射器的工况参数。表2工况参数压强/mpa温度/℃动力蒸汽0.4167248.29引射蒸汽0.009454.24混合蒸汽0.0175100在solution栏中将压力设置为二阶迎风模式,选择求解器的控制参数,选用simple算法,设置各项残差值为1×10-6,并添加混合流体出口。d.初始化流场和迭代计算:设置完毕之后,在fluent中初始化流场,设置迭代步数为9000步,点击计算按钮,开始运行求解。在模拟过程中通过观察各项残差值变化趋势和混合流体出口质量流量收敛情况来判断蒸汽喷射器的工作状态。如图4所示,给出了数值模型五项在迭代7000步时的残差图,虽然有残差值未达到1×10-6,但混合流体出口质量流量在5000步左右开始收敛。如图5所示,在残差图下方的console界面没有出现回流数据,所以可以将求解结果视为收敛。后处理阶段:待fluent数值模型计算结果收敛之后,在result栏中点击graphics和plots选项,选择显示流体速度、温度及压力沿喷射器中心轴线方向的数值变化曲线和相应的云图分布。然后从上述收敛的流场近似解中提取数据。在特定工况下,保持其他结构参数不变,利用单因素分析法,通过数值模拟的方式分析喷嘴喉部段直径x1、扩张段末端直径x2、过渡段的直径x3、混合室的收缩段长度x4和过渡段长度x5五个结构参数对喷射器引射系数y的影响规律,记录每次数值模拟结果,并标记相对较优结构参数,得到相应的结构性能参数以及云图。得出的数值模拟最优结构参数为:x1=32mm,x2=98mm,x3=182mm,x4=500mm,x5=200mm,μ=0.958mm。其中μ为引射系数。μ=gh/gp其中,gh为引射流体质量流量;gp为工作流体质量流量。(2)建立目标函数模型:针对上述五个结构参数的数值模拟结果,按一定步长选择40组数值模拟数据,上述5个结构参数的步长选择分别是1mm、16mm、8mm、150mm和100mm。利用最小二乘法来最小化预估数据与实际数据之间误差的平方和,从而建立起五个结构参数和引射系数之间的非线性映射关系;y=f(x|a)=a1+a(x1)+a(x2)+a(x3)+a(x4)+a(x5)(1)其中,通过多元函数求极小值的方式求出个拟合系数的值,如表3所示,表3参数最佳估算a189.72a2-29.96a32.825a4-0.1182a50.001848a6-0.00009905a70.005615a8-0.00009905a95.471e-07a101.573a11-0.03105a120.0002811a13-0.00009905a140.01033a150.00003715a16-5.07e-08a172.284e-11a18-0.000642a190.000002519a20-3.85e-09a212.07e-12(3)结构优化计算:采用人工鱼群算法(afsa)寻优求得最优结构(人工鱼状态)对应的最大引射系数值(食物浓度),在一定的结构参数范围内如式(3),建立起多变量单目标数学模型如式(2),maxf(x1,x2,x3,x4,x5)(2)以上述函数模型作为人工鱼群算法中的适应度函数y(目标函数);如图6所示,其具体优化计算过程包括以下步骤:①参数初始化:对人工鱼的状态、鱼群规模m、视野范围visual、拥挤度δ、步长step、最大尝试次数ntry的参数进行初始化。②人工鱼根据当前状态优先选择执行聚群、追尾行为,判断目标位置的拥挤程度,若满足执行聚群和追尾行为的条件,则选择其中最优行为进行下一步。执行聚群行为的条件为:设当前人工鱼位置为xi,食物浓度为yi,当前人工鱼视野范围内(dij<visual)人工鱼的数量为nf,寻找鱼群的中心位置xc和相应的食物浓度yc;若有yc/nf>δyi,则中心位置xc处人工鱼密度不大且食物浓度比较高,人工鱼由当前位置向中心位置xc靠近一步。执行追尾行为的条件为:设人工鱼当前位置为xi,其相应位置处的食物浓度为yi,其视野范围内人工鱼的数量为nf,寻找当前视野范围内人工鱼的最优位置xmax,相应食物浓度为ymax;当yc/nf>δyi时,则证明xmax处食物浓度较高且人工鱼数量不多,此时人工鱼可以向xmax位置靠近一步。③若人工鱼感知到下一位置太过拥挤,不满足执行聚群、追尾行为的条件,则人工鱼执行觅食行为。④若人工鱼的尝试次数达到最大尝试次数ntry(ntry=10)后仍不能满足移动条件,则执行随机行为。⑤更新人工鱼状态生成新鱼群。⑥评价所有人工鱼的状态和食物浓度,若优于公告牌上的值则将公告牌上的相应值替换为该人工鱼的状态和适应度值。⑦当算法迭代次数达到50次时算法结束,此时公告牌上的值即为最优值;否则执行步骤②。按照以上寻优步骤在matlab中编程人工鱼群算法,图7为目标函数y的两条适应度曲线的收敛情况,其中长虚线代表目标函数的平均适应度曲线,短虚线代表目标函数的最优适应度曲线。从图中可以看出目标函数的两条适应度曲线在迭代10步左右时开始重合,收敛趋势一致。目标函数适应度曲线收敛之后,在matlab的工作区读出最优引射系数值和相应的五个结构参数值,分别为x1=31.34mm、x2=80.52mm、x3=179.14mm、x4=447.38mm、x5=177.98mm,引射系数μ=1.0。优化后的蒸汽喷射器的性能测试:使用afsa优化后的结构参数对蒸汽喷射器重新建模,来验证优化效果,通过fluent数值模拟后处理结果来分析该结构下蒸汽喷射器的工作状态和性能指标。蒸汽喷射器结构经afsa优化后,得到的混合流体出口质量流量变化曲线如图8所示,图中喷射器出口处混合流体的质量流量曲线随着迭代步数的增大逐渐收敛至平滑,且没有出现回流现象,所以此结构参数下的蒸汽喷射器工作状态正常。表4中给出了afsa优化的结构参数和数值模拟优化结构参数对比,表4经fluent数值模拟验证,算法优化后的结构尺寸上比原数值模拟的最优结构体积更小,其中喷嘴喉部直径比原数值模拟结构节省2.1%,喷嘴出口直径比原数值模拟结构节省17.8%,混合室等截面部分直径比原数值模拟结构节省1.6%,混合室收缩段长度比原数值模拟结构节省10.5%,混合室等截面部分长度比原数值模拟结构节省11%,根据表4所示其相应引射系数值=0.982,比原数值模拟引射系数提高了2.5%。从表2中可以看出通过人工鱼群算法优化后的结构参数精度更高,优化后的蒸汽喷射器工作状态稳定,由于引射系数的提高使蒸汽喷射器的耗气量减少,同时结构达到最小化,节省成本。实施例2一种蒸汽喷射器,包括相互连通的接收室1、混合室4、扩压室5,以及设置在所述接收室1入口处的喷嘴6,在所述接收室1的下方设有进气口;所述混合室4包括收缩段2和过渡段3,所述喷嘴6包括进口段7、渐缩段8、喉部段9和扩张段10;所述过渡段3和喉部段9呈中空圆柱状。所述喷嘴6的进口段7直径为dp为130mm,其喉部段9直径dp*为31.34mm,其扩张段10末端直径dp1为80.52mm;所述混合室4的收缩段2始端直径d2为220mm,其过渡段3的直径d3为179.14mm。所述喷嘴6的渐缩段8长度l1为101mm,其喉部段9长度l2为35mm,其扩张段10长度l3为126mm。所述混合室4的收缩段2长度l4为447.38mm,其过渡段3长度l5为177.98mm。所述扩压室5的长度l6为900mm,所述扩压室5的后端直径dc为260mm。蒸汽喷射器的工作过程:在乏汽供热系统中,蒸汽喷射器利用汽轮机中压缸的五段抽汽作为动力气源来引射低压缸乏汽,利用乏汽的余温余热为凝汽器提供一股中温中压的混合蒸汽来加热热网循环水,从而将低品质乏汽变为可回收利用能源以达到节能目的。高温高压的轮机中压缸的五段抽汽作为动力蒸汽经过超音速喷嘴加速,在喷嘴出口截面处产生低压区,在压力差的作用下,将乏汽从接收室入口卷吸至接收室内,两股流体在混合室互相交换能量,逐渐混合为单一均匀的流体。之后,混合蒸汽在扩压室内动能不断转化为静压能和热能,最终克服出口背压排出扩压室。所以在流体交换能量的过程中,蒸汽喷射器提高了引射蒸汽的压力而不需要直接消耗机械能。最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,本领域普通技术人员对本发明的技术方案所做的其他修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1