一种高温磁力传动泵及其设计开发方法与流程

文档序号:34038843发布日期:2023-05-05 13:41阅读:201来源:国知局
一种高温磁力传动泵及其设计开发方法与流程

本技术涉及一种磁力泵,具体涉及一种高温磁力传动泵及其设计开发方法。


背景技术:

1、如图1和图2所示,目前的磁力传动泵由泵体、叶轮、泵盖、外磁转子及传动部件、内磁转子、止推环、隔离套、泵轴、轴套、滑动轴承组件及电机等组成,其中滑动轴承通过滑动轴承座安装于泵盖内孔中。内外磁转子之间用无磁性的隔离套隔开,隔离套与泵盖用密封垫紧固。与叶轮相连的内磁转子由与电机相连的外磁转子通过磁场的作用带动,从而使泵实现全密封无泄漏地进行介质输送。由于其无泄漏的特点,磁力泵被广泛应用于石油化工等领域输送易燃易爆、剧毒、贵重、腐蚀性介质的场合。

2、由于磁力泵的内转子部件浸没在介质中,作为内转子部件的支撑,其轴承一般采用滑动轴承,依靠自身输送介质进行润滑。对于需要长周期可靠运行的场合,为提高磁力泵的运转可靠性,滑动轴承需要选用耐磨的陶瓷材料,如目前在磁力泵中广泛应用的碳化硅陶瓷。众所周知,碳化硅陶瓷的热胀系数很小,约为4×10-6/℃,而作为轴承座的金属材料膨胀系数较高,常用马氏体不锈钢为11×10-6/℃,而奥氏体不锈钢在16×10-6/℃,约为碳化硅轴承的膨胀系数的2.5~4倍。而这将造成碳化硅滑动轴承与金属轴承座基体之间的巨大胀差。以在常规的导热油泵320℃工作温度为例,滑动轴承外径100mm时,温升300℃时碳化硅制作的滑动轴承与金属轴承座之间的胀差将至少是0.21mm。

3、这就导致了以下结果:(1)如果为了方便装配和维修采用间隙或过渡配合,则在高温工况运转时,滑动轴承与轴承座的间隙因胀差而更大,有很大的间隙,如上述尺寸的滑动轴承将有0.2mm左右的配合间隙,将导致严重松动,使泵的振动增大,脆性的碳化硅陶瓷滑动轴承容易损坏;同时,该间隙增大,导致滑动轴承偏离轴承座基体轴心,使得转子在重力或内部水力径向力作用下偏离基体的轴心,导致小间隙的密封环间隙部位发生刮擦磨损,寿命缩短,同时碰擦造成转子振动增大,反过来影响脆性的滑动轴承的使用可靠性,易导致碳化硅陶瓷滑动轴承碎裂损坏。因此,在高温磁力泵上应用基本不采用间隙配合,而是采用如下所述的过盈配合。

4、(2)采用过盈配合可以防止高温下松脱。由于胀差大,为避免滑动轴承与轴承座松脱,需要的过盈量很大,以前述100mm直径的滑动轴承配合尺寸为例,需要至少0.21mm的过盈量。因碳化硅的弹性模量达450gpa左右,而抗弯和抗剪强度低于金属,属于脆性材料。因此,装配后在常温冷态下,滑动轴承处的应力很大,在导流槽处的应力已经超过了碳化硅材料的抗压强度,容易发生破裂损坏。即使一开始没坏,但在磁力泵冷态起动过程中,受振动影响也会发生开裂损坏。过盈量大导致现场装配和拆修不方便,需要配备高温加热器,对保障石化流程的装置连续安全可靠运行不利。

5、(3)然而过盈装配引起的应力很大,可达1000mpa左右,甚至超过了常用金属材料的抗拉强度,远超过磁力泵常用金属材料的屈服应力,导致轴承座屈服变形甚至破裂。作用在轴承座上的应力还导致轴承座较大的形变,外圆面尺寸显著增大达0.12mm,需要经过修配加工到与泵盖内孔尺寸相近后才能装入到泵盖定位孔中;但当处于高温工况时,由于碳化硅轴承的热胀系数小,膨胀量小,使得与轴承座基体之间的过盈量减小,导致轴承座基体所受过盈应力引起的形变变小,与自由膨胀的泵盖内孔之间的间隙变大,引起滑动轴承部件与泵盖之间偏心,从而导致转子与基体之间偏心,使转子上叶轮密封环部位发生刮擦,寿命变短,振动增大,易致滑动轴承碎裂。而滑动轴承一旦碎裂将造成磁力泵转子与隔离套碰擦,从而导致隔离套损坏,高温易燃介质泄露的严重安全事故。

6、因此,目前的高温磁力泵采取的是滑动轴承与轴承座小过盈配合,加紧定螺钉顶住滑动轴承进行防转的设计,同时显著增大叶轮密封环间隙防止碰擦的方式进行运行。虽然密封环不会碰擦,但因密封环间隙增大导致密封环处的回流损失显著增大,磁力泵效率明显降低,能耗较大;同时,小过盈的配合设计,使得高温下滑动轴承与轴承座之间间隙增大而松动,在高温和振动力作用下,久而久之,滑动轴承易产生局部裂纹而损坏,且轴承座易因与泵盖之间配合松动而偏向一侧,导致转子也偏心,引起振动增大。

7、综上,目前的磁力泵滑动轴承结构设计存在高温松动、同轴度无法始终保持的问题。目前的高温磁力泵存在影响可靠运行的隐患缺陷,只能依靠多次停机拆机检查磨损情况去减少造成事故的概率。目前的磁力泵在应用于高温工况时的最大风险隐患是滑动轴承的可靠性,虽然勉强能用于高温工况,但振动较大,使用隐患多,可靠性较差,检维修间隔期短,不利于石化行业对设备长周期安全可靠运行的要求,故障率较高,安全风险较大,而且运行效率较低致使能耗较大,不利于节能减排、减少碳排放的目标。

8、因此,亟待一种保证滑动轴承不松动且同轴度能始终保持的新颖设计,彻底解决目前高温磁力泵存在的防松与同轴度无法同时保持的问题,使得磁力泵能在高温和变温工况下都能长周期可靠高效运行,且维修拆装简易高效。

9、申请内容

10、本技术的目的是针对现有技术中存在的上述问题,提供了一种高温磁力传动泵及其设计开发方法。

11、本技术核心是通过降低轴承座支承部位表面的结构刚度,减少大过盈装配时所产生的应力,避免了滑动轴承受损,也减少了装拆用力,维修方便,同时又不影响轴承座与外侧安装基体之间的配合尺寸,使滑动轴承组件始终保持与安装基体之间的同轴度。本技术仅针对于高温磁力传动泵的滑动轴承部分的结构进行优化设计开发,其余结构均为现有技术。

12、为了实现上述申请目的,本技术采用了以下技术方案:一种高温磁力传动泵包括以下步骤:

13、s00、在磁力传动泵的轴承座内孔表面沿圆周方向均匀设置多条同样形状和长度的螺旋形缝隙,并将螺旋形缝隙的开口设于内孔表面,末端位于所轴承座的基体中;

14、s10、计算轴承座与滑动轴承之间配合面处从室温到磁力传动泵所需设计温度时的胀差;

15、s20、根据胀差和滑动轴承的外径尺寸,按设计温度时的过盈量要求确定轴承座的内孔尺寸;

16、s30、校核轴承座的支承薄片的强度并不断调整支承薄片的结构尺寸和/或形状和/或数量,直至支承薄片的应力小于等于轴承轴材料的许用应力,以完成高温磁力传动泵的设计;

17、其中支承薄片位于轴承座与滑动轴承配合的部位。

18、进一步地,s00步骤中,螺旋形缝隙形状为渐开线或圆弧形或近似圆弧形。

19、进一步地,s00步骤中,螺旋形缝隙的末端与轴承座内孔表面的径向距离与螺旋形缝隙长度比为0.1~0.25之间。

20、进一步地,s00步骤中,从螺旋形缝隙从螺旋形缝隙的螺旋线始端设定距离开始,使得支承薄片的厚度至少有0.5mm的壁厚,其中螺旋线始端与轴承座内孔内表面相交。

21、进一步地,s00步骤中,螺旋形缝隙的数量不少于六。

22、进一步地,s00步骤中,相邻螺旋形缝隙的始端与末端部分长度在圆周方向位于同一个周向方位角,以使得轴承座内表面形成薄片形结构,该薄片的一端为悬空,另一端固定于轴承座的基体上,形成悬臂梁式薄片。

23、进一步地,s10步骤中,根据轴承座的线性膨胀系数、滑动轴承材料的线性膨胀系数、滑动轴承外径配合部位的尺寸及磁力传动泵所需设计温度计算出胀差。

24、进一步地,s20步骤中,根据胀差和滑动轴承的外径尺寸以及过盈量确定轴承座的内孔尺寸,其中过盈量为在胀差的基础上增加预紧力,使得胀差值增加,通过过盈量代替胀差,以实现高温下防松的效果。

25、进一步地,过盈量为胀差的115%~130%。

26、一种高温磁力传动泵,通过上述的一种高温磁力传动泵设计开发方法设计开发制得。

27、与现有技术相比,本技术具有以下有益效果:

28、1、采用本技术方法的轴承座在产生同样的因过盈结构引起的变形量时,由于使悬臂梁式薄片的弯曲变形所需的力远小于圆柱形刚性厚壁筒体,滑动轴承与轴承座在大过盈装配的情况下,应力显著减小,也就易于装拆,在常温冷态下也能正常工作;在工作于设计温度时,温升引起轴承座与滑动轴承之间过盈量减小,但两者仍然处于过盈配合状态而紧密配合着,确保高温下不松脱,同时维持着两者之间的同轴度,彻底解决了原有高温磁力泵所存在的问题缺陷;

29、2、采用本技术方法的轴承座,其内表面上的一体化薄片,可采用电火花线切割加工方法形成,沿圆周均匀分布,切割出多条末端封闭的缝隙,形成多片同一尺寸的较薄的支承片。线切割形成的缝隙本身成为支承薄片径向弯曲变形所需的活动空间,如此可通过降低轴承座支承部位表面的结构刚度,减少大过盈装配时所产生的应力,避免了滑动轴承受损,也减少了装拆用力,维修方便,同时又不影响轴承座与外侧安装基体之间的配合尺寸,使滑动轴承组件始终保持与安装基体之间的同轴度;

30、3、本技术的支承薄片已经通过弯曲变形承受了大过盈引起的应力,因此轴承座上与泵盖的配合部位基本不受内孔过盈配合的影响,可自由追随泵盖一起热胀冷缩,始终保持与泵盖的同轴度,达到温变自适应的效果;

31、4、本技术通过在确定轴承座内孔尺寸时增加过盈量,增加部分的过盈量所产生的预紧力,用于作为高温下防松需要,因为滑动轴承副的摩擦系数很低,只需增加稍许的预紧力已经足以达到防转效果。


技术实现思路

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1