技术领域
本发明涉及滚动轴承及其包装方法。
背景技术:
近年来,在机床用轴承(特别是机床主轴用轴承)中,为降低由于润滑油的搅拌阻力而带来的温度上升,选择采用油气润滑,油雾润滑等油润滑以及油脂润滑等微量润滑法。在油润滑的情况下,出于对使用气体所带来的成本高,且当从喷嘴口向着轴承内部进行喷射的气体通过轴承的内部时的滚动体上的风刮音而产生噪音,和经排油孔所排出的使用后的油对环境的影响等的顾虑,另外,出于对油雾的漂浮而对人体的影响,对视线的干扰等的作业环境上的顾虑,所以有必要设置对策。
在如此节约能源,减少环境负担等的背景下,在作为机床主轴用轴承中,不使用气体,也不向外部流失润滑油的油脂润滑方式的需求变得高涨。
另一方面,一般来说,轴承在保管、运输时被包装,在使用前将其开封,填充油脂并使用。但是,为了防止在保管、运输的过程中生锈,由于以轴承全表面附着着防锈油的状态进行包装,如果在轴承开封后维持原样进行油脂填充,则由于防锈油的原因,油脂不能可靠地附着于该润滑部位的表面上,这在初期的磨合运转时、以及之后的工作运转状态下,油脂提前流出从而油脂寿命下降。
尤其是在机床的情况下,因为轴承使用时的最大dmn值至少为50万转以上,并要求低升温特性,所以为了抑制因润滑剂的过多而产生的搅拌抵抗力,与马达用轴承等一般用途所使用的轴承相比,其油脂的封入量较少,机床用轴承的油脂封入量一般为轴承内部空腔的10~20容积%,根据情况不同也可为10~15容积%。因此,在机床用轴承的情况下,如果如上所述那样在开封后填充油脂,则油脂的流出而使存余油脂量变得极少。
另外,由于在油脂润滑中,使用时不能对轴承内部的润滑油进行更换,一旦在包装时有异物混入到轴承内部,异物就会残留其中,给旋转带来障碍。
因此,为了除去附着的防锈油、轴承内的异物,当包装开封后,需要对轴承进行清洗、脱脂之后填充油脂,而成为轴承装配时的操作负担。因此,本发明申请人在专列文献1的基础上,提出了如下方案:在轴承表面以40μm以下的油膜厚度涂覆防锈油,并用汽化性防锈薄膜将轴承整体包装,并且使汽化性防锈薄膜与轴承之间保持为减压状态。通过使防锈油的附着量为40μm以下,即使在包装开封后不通过清洗、脱脂的工序来填充油脂,对油脂产生影响也得到抑制;而且,通过利用汽化性防锈薄膜进行气密包装,即使防锈油的附着量减少至40μm以下,也能够得到足够的防锈性能。
专利文献
专利文献1:日本特开2006-322604号公报
技术实现要素:
本发明要解决的课题
但是,对减少防锈油的附着量以进一步降低对油脂的影响的要求日趋强烈,本发明的目的在于提供一种滚动轴承,其与现有相比防锈油油量少,还能够维持良好的防锈性能。
解决本课题的技术手段
为解决所述的探讨课题,本发明提供了以下所示的滚动轴承及其包装方法。
(1)一种滚动轴承,具有内圈、外圈、以及在上述内圈与上述外圈之间由保持架滚动自如地保持的多个滚动体,其特征在于,
从轴承全表面除去氯化物离子以及硫酸离子,并附着有平均油膜厚度为4.5~10μm的防锈油,并且轴承整体被汽化性防锈薄膜包覆,且上述汽化性防锈薄膜与轴承之间保持为减压状态。
(2)如(1)中所述的滚动轴承,其特征在于,上述滚动轴承上所附着的每单位表面积的残留氯化物离子量为0.2~10ng/mm2。
(3)如(1)或(2)中所述的滚动轴承,其特征在于,在由内圈、外圈及滚动体所形成的轴承内部空腔里填充了油脂的状态下,轴承整体被汽化性防锈薄膜包覆,且上述汽化性防锈薄膜与轴承之间保持为减压状态。
(4)一种滚动轴承的包装方法,对组装了轴承构成部件后的滚动轴承进行包装,其特征在于,从轴承全表面除去氯化物离子以及硫酸离子后,将防锈油以平均油膜厚度为4.5~10μm进行附着,并且用汽化性防锈薄膜包覆轴承整体,且使上述汽化性防锈薄膜与轴承之间保持为减压状态。
(5)如(4)中所述的滚动轴承的包装方法,其特征在于,通过从上述滚动轴承全表面除去氯化物离子,上述滚动轴承上所附着的每单位表面积的残留氯化物离子量为0.2~10ng/mm2。
(6)如(4)或(5)中所述的滚动轴承的包装方法,其特征在于,在附着了防锈油之后,在由内圈、外圈及滚动体所形成的轴承内部空腔里填充油脂,并用汽化性防锈薄膜包覆轴承整体,并且使上述汽化性防锈薄膜与轴承之间保持为减压状态。
发明的效果
在本发明中,由于在除去氯化物离子以及硫酸离子后,附着防锈油,并用汽化性防锈薄膜密封包装,所以与现有相比即使防锈油的附着量少,也能得到良好的防锈性能。因此,即使在开封后不进行清洗、脱脂就进行油脂封入的情况下,因防锈油所产生的影响变小,提高了润滑性能和寿命。
附图说明
图1是示出轴承的保管状况与轴承表面的残存氯化物离子量之间关系的曲线图。
图2是示出作为本发明的滚动轴承的一个例子的角接触球轴承的立体图。
图3是示出作为本发明的滚动轴承的其他例子的单列圆筒滚子轴承的立体图。
图4是示出作为本发明的滚动轴承的其他例子的单列圆筒滚子轴承的立体图,并示出将组装有内圈以及滚动体、保持架的内圈侧的组部件与外圈分别包装状态的立体图。
图5是示出作为本发明的滚动轴承的其他例子的双列圆筒滚子轴承的立体图。
图6是示出作为本发明的滚动轴承的其他例子的双列圆筒滚子轴承的立体图,并示出将内圈以及滚动体、保持架进行组装的内圈侧的组部件与外圈分别包装状态的立体图。
图7是示出试验例1的试验结果的曲线图。
图8是示出试验例2及试验例4中所使用的试验装置的概略示意图。
图9是示出试验例2的结果的曲线图。
图10是示出试验例3的结果的曲线图。
图11是示出试验例4的结果的曲线图。
符号的说明
1 角接触球轴承
2 单列圆筒滚子轴承
2A 内圈
2B 圆筒滚子
2C 保持架
2D 外圈
3 双列圆筒滚子轴承
3A 内圈
3B 圆筒滚子
3C 保持架
3D 外圈
10 汽化性防锈薄膜
11 密封部
具体实施方式
以下参照附图对本发明作详细说明。
本发明的滚动轴承在组装完成后,从轴承全表面除去氯化物离子以及硫酸离子之后,附着防锈油,并用汽化性防锈薄膜进行密封。通过除去易导致生锈的氯化物离子以及硫酸离子,防锈油的附着量即使减少到平均油膜厚度为4.5~10μm,也能确保良好的防锈性能,所以在开封后,即使不进行清洗、脱脂而封入油脂,也不会存在因防锈油所产生的对油脂的影响。
所谓氯化物离子以及硫酸离子是轴承在制造过程中,从各种机械设备、化学药品、操作人员等附着于轴承表面的。在除去这些氯化物离子以及硫酸离子时,例如用水置换型清洗液进行清洗即可。通过清洗,优选使滚动轴承表面的残留氯化物离子的量为0.2~10ng/mm2。
在滚动轴承的制造过程中主要采用磨削加工,一般在磨削加工时,喷洒大量的磨削水来进行加工,使制品尺寸不会随着加工过程中的热量而变化。该磨削水使用的是自来水,而自来水中必定含有氯元素成分,即氯化物离子。
按照日本《水道法》的规定,自来水中的氯化物离子的量须保持在0.1mg/L以上,另一方面,出于味道、气味的观点,还示出了将其上限控制在1mg/L以下的水质管理的目标值。因此,滚动轴承的制造中,磨削水含有0.1~1mg/L的氯化物离子。在磨削加工中,大约几十L(升)的大量磨削水喷洒在滚动轴承上,相当数量的氯化物离子附着于滚动轴承。
另外,人的体液(汗水及唾液等)中也含有大量的氯化物离子,经人手触摸过的地方也残留有氯化物离子。甚至,大气中也含有氯化物离子,所以,被暴露在大气中的滚动轴承也附着有大气中的氯化物离子。即使在将其收容在密封容器而不暴露在大气中的情况下,也不能避免微量氯化物离子的附着。
此外,在图1中,示出了轴承的保管状态(大气中室外保管、大气中室内保管、室内气密容器保管)、与在轴承的表面残存的氯化物离子量之间的关系。此外,残存氯化物离子量的测定,按照以下的程序(在各工序中使用橡胶手套)进行,并使用了光明理化学工业(株)制造的氯化物离子检测管201SA。
(测定方法)
(1)对于大气中以及密封容器中保管了预定时间后的滚动轴承,用遮护胶带将测定部位(轴承外径面等)以外的部分遮蔽。
(2)将去离子水100mL到入聚乙烯烧杯中。
(3)将棉纱布适当地折叠后用去离子水浸湿。
(4)用浸湿的棉纱布将测定部位沿平行方向擦拭。
(5)将棉纱布用量杯中的去离子水进行充分漂洗。
(6)重复(4)、(5)。
(7)收集后,将使用的橡胶手套的表面用50mL的去离子水充分地清洗,将清洗所使用的去离子水到回烧杯作为试样液。
(8)用切片机将氯化物离子检测管的两端切下,将其以箭头方向朝上放入试样液中。
(9)如果试样液中有氯元素,则在检测管的下端出现白色的变色层。当试样液渗透到检测管的顶端后,将检测管取出,用变色层的前端上的刻度读取试样液的氯化物含有量。
如图1所示,可知即使滚动轴承在大气中或者在密封容器中进行保管,也会有氯化物附着。此外,设附着于轴承的每单位面积的残存氯化物离子量为V、设氯化物离子的附着量为T、设在测定氯化物离子量时所使用的轴承的测定部位的表面积为S,则V可由下式算出。
V=T/S
而且,由于附着的氯化物离子影响到滚动轴承的生锈,因此在本发明中,将每单位面积的氯化物离子量抑制在0.2~10ng/mm2。
作为防锈油,只要是难以产生粘糊状态、操作性能好,并且容易进行附着量的控制,则对防锈油没有特别的限制,例如,优选使用不含有凡士林的防锈油。另外,为更容易地控制防锈油的附着量,优选防锈油的粘度为10cst以上、60cst以下。
另外,作为防锈油的附着方法,只要能够调整油膜厚度,没有特别的限制,例如可以例举出离心脱油法、吹气法、真空加热法等等。特别是为了使防锈油均等地附着,优选使用吹气法。
防锈油的附着量平均油膜厚度为4.5~10μm。平均油膜厚度为小于4.5μm时,则难以长时间地保持防锈性能。另外,由于防锈油与油脂发生反应,引起结晶析出,使得噪音性能降低,因此如果防锈油的附着量超过平均油膜厚度10μm后,则容易与油脂发生反应。
作为汽化性防锈薄膜,能够使用在聚乙烯膜等的树脂性薄膜中含有有机羧酸胺盐、磷酸胺盐、碳酸胺盐、杂环胺盐等的防锈剂的制品。作为防锈剂的更具体的例子,可以例举出二环己基铵亚硝酸盐、二环己基铵辛酸、环己胺氨基甲酸酯、环己基胺月桂酸酯、二异丙基铵亚硝酸盐、硝基萘铵亚硝酸盐、苯甲酸铵、环己胺苯甲酸盐、二环己胺磷酸盐等等。另外,为了将滚动轴承收容并保持减压状态,如图1~5所示,汽化性防锈薄膜优选使用加工为袋状的制品。
另外,优选透明的汽化性防锈薄膜,由于选其为透明,所以能够在包装状态下确认产品的刻印等。例如,如果将尺寸公差等检查结果用激光打标机直接打印在轴承上,不弄脏轴承就能够将其确认。特别是,打印在外圈端面、内圈端面以及外圈的外径面等,就能够更容易地确认。
并且,使汽化性防锈薄膜与轴承之间减压并密封。而且为了保持抽真空的减压状态,通过热密封等进行密封。
通过这样的包装,在保管、运输时,不仅能够有效地防止轴承的生锈,更能够防止大气中的异物的附着。另外,不需要清洗工序、脱脂工序,在填充油脂时因防锈油所产生的影响变得更小,能够很好地保持润滑性能。
上述包装可以是在内圈、外圈以及滚动体所形成的轴承的内部空腔里填充了油脂的状态下,也可以是填充油脂之前的状态。通过以填充了油脂的状态进行包装,则不需要使用前的填充油脂的工序。此外,由于汽化性防锈薄膜与轴承之间为减压状态,包装膜进入内外圈之间呈凹状,即使在搬运过程中受到振动的情况下,油脂也不会流出。
在本发明中,对轴承的种类没有限制,例如能够适用于图2中所表示的角接触球轴承1的包装。即,用水置换型的清洗液将刚刚制造出的角接触球轴承1进行清洗,除去氯化物离子以及硫酸离子,并将防锈油以4.5~10μm平均油膜厚度附着之后,放入由汽化性防锈薄膜10制成的袋子里,并抽真空,通过热密封等进行封闭。此外,图中的符号11为密封部。
同样,如图3所示,也能够适用于单列圆筒滚子轴承2的包装。
另外,如图4所示,也可以将组装有单列圆筒滚子轴承2的内圈2A、圆筒滚子2B以及保持架2C的内圈侧组件与外圈2D分别放入由汽化性防锈薄膜10制成的袋子里。通过对内圈侧组件与外圈2D分别进行保管,能够将密封状态一直保持到轴承组装之前,能够更有效地抑制大气中的异物的附着及生锈。此外,像这样将内圈侧组件与外圈2D分别地进行包装的情况,是在未填充油脂的状态下来进行。
而且,也可以如图5所示那样双列圆筒滚子轴承3的包装;图6所示那样将组装有双列圆筒滚子轴承3的内圈3A、圆筒滚子3B以及保持架3C的内圈侧组件与外圈3D分别放入由汽化性防锈薄膜10制成的袋子里进行密封。
实施例
以下列举试验例对本发明作进一步的说明,但本发明并不限于此。
(试验例1:防锈性能试验)
准备组装刚刚完成的名称代号为7008CTYNDBLP4的角接触球轴承(内径:40mm、外径:68mm、宽度:15mm),用水置换型清洗剂(アクア化学(株)(AQUA CHEMICAL CO.,LTD)制造的Aqua Solvent)进行清洗,除去表面的氯化物离子以及硫酸离子。接下来,通过吹气法,将作为防锈剂的不含有凡士林的润滑油(JX日矿日石エネルギー(株)(JX Nippon Oil&Energy)制造的アンチラストP-2810(ANTIRUSTP-2810);粘度:12cst),改变附着量来附着于轴承全表面。然后,放入到由汽化性防锈薄膜(アイセロ化学社(AICELLO CHEMICAL CO.,LTD)制造的ボーセロン(Boselon))制成的袋子里,抽真空后,用热密封进行密封,来作为试验体。此外,在设防锈油的附着量为ΔS,设滚动轴承的滚动部件(外圈、内圈、保持架、滚动体)的全表面积为S时,防锈油的平均油膜厚度(t)可用下式进行计算。另外,附着量(ΔS)通过测定防锈油附着前后的重量差(M),除以防锈油的比重(ρ)来求得。
t=ΔS/S(其中,ΔS=M/ρ)
然后,将各试验体静置于50℃-90%RH的高温高湿的环境下,比较其直到生锈的期间。在50℃-90%RH的环境下,与静置于作为日本的平均气温、湿度的20℃-70%RH的情况相比较,在生锈上有大约30倍左右的加速效果,在同一张图上一并记载了所相当的年数。结果如图7所示,可知如果防锈油附着量小于平均油膜厚度4.5μm,包装时的防锈性能将显著下降。由此结果可知,通过使防锈油附着量为平均油膜厚度4.5μm以上,能长期地保持较好的防锈性能。
(试验例2:油脂保特性试验)
将试验例1中制作的试验体开封,在内圈、外圈以及滚珠所构成的轴承内部空腔中封入1.1g(轴承内部空腔容积的15%)的油脂(日本精工(株)制造的MTE),制作试验轴承。然后,使用图8所示的试验机,在如下所示的条件下旋转24小时之后,测定了油脂残存率。另外,为了比较,如下制作比较用试验轴承:进行清洗、脱脂,并在没有防锈油附着的该轴承里封入油脂,并同样测定油脂残存率。此外,油脂残存率是指:将油脂封入的状态下的旋转前的轴承重量(M1)与旋转后的轴承重量(M2)之差除以油脂的封入量(M3)的值以百分比来表示,并从100减去的值,油脂的残存率越低则表示油脂的寿命就越短。
·组装时的预压力:120N
·转速:10000min-1(dm·n=54×104)
·旋转姿势:立式
·驱动方式:带式驱动
·外筒冷却:无
结果如图9所示,可知:在平均油膜厚度为10μm之下时,相对于比较例试验轴承的油脂残存率99%,其平均为97%,具有与轴承经过脱脂、清洗后封入油脂的现有使用方法同等的油脂保特性能。另一方面,当平均油膜厚度为15μm以上的情况下,存在油脂残存率下降的趋势。根据该结果可知:通过使防锈油的附着量为平均油膜厚度为10μm以下,能够确保与原来相同的油脂保特性,进而确保相同的润滑寿命。
(试验例3:油脂析出试验)
制作将名称代号为6202的深沟球轴承用置换型清洗剂清洗之后,将防锈油以平均油膜厚度为10μm进行附着,封入油脂(日本精工(株)制造的MTE、MTS、和NOKクリューバー(株)(NOK KLUBER CO.,LTD)制造的ISOFLEX NBU15)的试验轴承,以及进行脱脂、清洗后不附着防锈油而封入油脂的比较用试验轴承每种各10个、共60个。
然后,将各试验轴承放入恒温槽中,以每隔几个小时后将温度变化为0℃→30℃→60℃的热循环重复7次后,进行一次噪声计数的测定,该测定共计进行4次。轴承热循环前后的噪声计数是使用安装在公知的安德鲁仪(声音测定装置)的噪声测量仪来进行测定的。
结果如图10所示,在试验轴承与比较用试验轴承中,初期的噪声计数与热循环4次后的噪声计数中看不出显著差异。根据该结果可知:通过使防锈油的附着量为平均油膜厚度为10μm以下,不会产生因油脂的反应而导致的结晶析出。
(试验例4:轴承升温试验)
将试验例1中使防锈油附着量的平均油膜厚度调整为10μm的试验体开封,封入1.1g(轴承内部空腔容积的15%)的油脂(日本精工(株)制造的MTE)来制作试验轴承,另外,为了比较,制作经过脱脂、清洗后,不附着任何防锈油而封入油脂的比较用试验轴承。然后,使用试验例2中所用的试验装置,在下述条件下使各试验轴承旋转,并测定此时的外圈温度。
·组装时的预压力:120N
·转速:最大12000min-1(dm·n=65×104)
·旋转姿势:立式
·驱动方式:带式驱动
·外筒冷却:无
结果如图11所示,在附着有平均油膜厚度10μm的防锈油的试验轴承与比较用试验轴承中,在升温特性上看不出显著差异。所以从该结果可知,通过使防锈油的附着量为平均油膜厚度为10μm以下,能够保持与现有相同的油脂升温特性。
(残留氯化物离子量的检验)
通过通常的磨削加工制作滚动轴承,对全表面进行研磨,除去附着的氯化物离子,使其达到分析器的检测极限以下。
在该前处理之后,通过在表1中所示的处理,使氯化物离子将重新附着,并测定氯化物离子的量。在测定中,将滚动轴承从一定量的超纯水到浴槽中以80℃浸渍2.5小时,使氯化物离子溶解后,从浴槽中提取液体,在Dionex公司制作的离子色谱分析器DX-120和分离柱IonPacAS12A(4mm)上进行测定。测定方法按与JIS K0127的解说图6所示的相同的条件进行。对于氯化物离子进行定量,算出每单位面积的量。将结果一并记载在表1中。
另外,对于实施了同样处理的滚动轴承施行生锈加速试验。在该生锈加速试验中,在滚动轴承上以平均油膜厚度4.5μm涂覆防锈油,在汽化性防锈薄膜密封的状态下,在50℃、90%RH高温高湿的环境下静置30天之后,确认滚动轴承的表面有无锈蚀产生。结果一并记载在表1中。
[表1]
如表1所示,当氯化物离子量在5~10ng/mm2,能够防止生锈。
另外,将磨削水里含有氯化物离子量假定为日本水道法中所规定的至少为0.1mg/L的情况下,设想没有除去氯化物离子的、通常的磨削加工的滚动轴承上,附着有数十~数百ng/mm2的氯化物离子,在不除去氯化物离子的情况下,如果防锈油的油膜厚度薄到小于4.5μm,则不能抑制锈蚀的产生。
从本试验可知,通过使氯化物离子除去后的滚动轴承上所附着的氯化物离子量为0.2~10ng/mm2,且使本发明所规定的将防锈油的平均油膜厚度为4.5μm(4.5~10μm)以上,能够获得良好的防锈性能。
参照详细、特定的实施方式对本发明进行了说明,但对于本领域技术人员来说显而易见,在不偏离本发明的主旨及范围的情况下,可进行各种各样的变更及增加一些修正。
本专利申请基于2013年5月31日所申请的日本专利申请(日本特愿2013-115810),并将其内容作了引用和参照。
产业上利用的可能性
本发明适用于机床设备用轴承(特别是机床主轴用轴承)的保管、运输。