散热自润滑轴套的制作方法

文档序号:18637263发布日期:2019-09-11 22:25阅读:215来源:国知局
散热自润滑轴套的制作方法

本发明属于轴承生产技术领域,具体涉及一种散热自润滑轴套。



背景技术:

自润滑轴承由于适合于润滑不可靠或不可能之处而开始受到人们的重视。单一材料的自润滑轴承轴套一般有铜粉末治金和塑料两种结构。铜粉末冶金结构强度比较低,难以适合高载荷的工作条件,在跑合期还很容易造成拉伤。在钢板背面采用高分子保护可以提高自润滑轴承寿命,但是带来了散热难题。发明人之前公开了一种散热轴套,提高了板材散热效果,利用铜颗粒解决氟材料与钢板结合力的问题,但是此结构带来一些问题,比如铜颗粒主要利用物理作用对氟材料进行稳定,最主要的是烧结铜颗粒至钢板上的时候会对润滑铜粉产生较大影响,因为润滑铜粉的性能是轴承板材的核心,因此必须先烧结润滑铜粉,在其检验合格后再烧结铜颗粒,这样会产生润滑铜粉二次烧结,影响润滑性能,加大降低成品率。



技术实现要素:

本发明的目的是提供一种散热自润滑轴套,通过结构设计以及思路创新的协同作用,使得散热自润滑轴套具备良好的机械性能,同时具有优异的层间稳定性,尤其是散热性能优异,有效提高了散热自润滑轴套的使用性能、应用范围,可用于高端自润滑轴承的制备。

为达到上述发明目的,本发明采用的技术方案是:一种散热自润滑轴套,所述散热自润滑轴套包括轴套本体与基座;所述轴套本体包括润滑铜粉层、钢板层、环氧结构胶层、含氟层聚酰亚胺薄膜层、导热胶层、散热层、氧化锌层;所述散热层包括多孔纤维、气凝胶;所述多孔纤维位于气凝胶中;所述多孔纤维包括带孔纤维、多孔纤维胶层;所述多孔纤维胶层位于带孔纤维外表面;所述多孔纤维胶层的孔中设有石墨烯层结构;所述润滑铜粉层、钢板层、环氧结构胶层、含氟层聚酰亚胺薄膜层、导热胶层、散热层、氧化锌层依次设置;所述基座没有安装孔;所述基座设有折边。

本发明中,散热自润滑轴套本体由散热自润滑轴套板材常规卷曲制备,为圆柱形结构,常规焊接在基座上,基座设置安装孔与现有其他部件连接,设置基座避免轴套直接连接可以提供缓冲从而增加轴套使用寿命。

本发明中,导热胶层的厚度为0.6~0.7微米,一方面可以形成良好的粘接性,另一方面可以将热量传送。

本发明中,基座是为了将轴承套本体安装在现有支架上,如果采用之前常规的开孔螺丝或者螺栓安装,存在轴承运行长时间后安装会松动的问题,本发明不采用常规螺丝安装,创造性的在基座四周设置折边,该折边背向轴套本体,从而使得基座呈开口背着轴套本体的盒状结构,从而在与现有支架结合时,将折边套在支架上,采用法兰或者周圈紧固夹固定,较开孔螺丝固定稳定得多,优选的,在折边内侧壁设有厚度为0.5~0.6毫米的橡胶层,进一步缓解轴承运行带来的震动。

本发明中,润滑铜粉层、钢板层、环氧结构胶层、含氟层聚酰亚胺薄膜层、导热胶层、散热层、氧化锌层依次设置是指这几层结构按次序设置,具体可以参见说明书附图;使用时,将润滑铜粉层置于最里边用于摩擦,将氧化锌层置于最外面,从而发热的热量通过环氧结构胶层迅速传导至气凝胶结构,从而有效散去,因此本发明不仅为一个有效散热结构,而且对板材制备的轴承套使用寿命有利,背层结构保证了轴承层应有的强度和稳定的尺寸,提高了耐磨性能,也避免了拉伤现象的发生。

本发明中,各材料都是现有产品,比如润滑铜粉层为常规结构,利用铜粉与润滑材料混合烧结即可得到;尤其是根据本发明设计的结构,润滑铜粉不会经过对性能影响很大的二次烧结;含氟层聚酰亚胺薄膜层的厚度为18.5微米,这个结构的设计可以提高轴承板材背面硬度,卷曲时可与气凝胶提供一定的缓冲效果,含氟层聚酰亚胺薄膜层由聚酰亚胺薄膜与氟材料组成,为双层结构,其中聚酰亚胺薄膜一侧与环氧结构胶层接触、氟材料一侧与导热胶层接触;氧化锌喷涂在散热层表面即可得到氧化锌层,可以起到保护作用;本发明创造性的设计此结构,首次应用在自润滑轴承的轴套复合结构中,可以发挥自身性能效果以及提高复合材料的柔韧性,更主要的是与多孔纤维的结合,配合石墨烯提高散热能力自发热。

本发明中,散热层的厚度为48~50微米,除了本身的机械性能好的效果外,还可发挥散热效果,而且此厚度与铝板可提高整体弯曲能力;气凝胶为常规二氧化硅气凝胶,通过溶胶凝胶法结合干燥制备得到,在溶胶置换溶剂后,加入多孔纤维,最后进行程序升温,制备得到散热层。

本发明中,散热层包括多孔纤维、气凝胶,所述气凝胶结构的孔隙率为38~42%,将多孔纤维设置在低孔隙率气凝胶结构中,既可以利用现有气凝胶柔软舒适的特性缓解带孔纤维的刚性,特别是,气凝胶结构进一步保证石墨烯层稳定在胶层中,而且不会影响散热效果。

本发明中,多孔纤维胶层的孔隙率为68~70%,可以在带孔纤维外表面涂覆带有致孔剂/石墨烯复合物的柔性高分子溶液,热处理在带孔纤维表面形成多孔胶层,并且石墨烯层位于孔中,可以发挥散热性能,又能够保持稳定,纤维可为聚乙烯醇纤维等,尤其是本发明采用的结构不会对纤维本身产生影响,避免现有技术采用导热纤维带来的纤维本身性能有影响的问题。

本发明首次公开了一种散热自润滑轴套,得到的产品具有较好的硬度以及弯曲性,保持自润滑性能的同时,可以发挥散热效果,将散热自润滑轴套内部发热(180度)一段时间后关闭,通过内外平衡测试散热能力;通过纤维以及多层结构的设计,有效保障了散热稳定高效、各层界面效果好的优势:尤其是利用环氧-聚酰亚胺-氟材料良好的界面效应,使得高分子层与钢板结合良好,避免铜颗粒带来的系列问题。

附图说明

图1为散热自润滑轴套结构示意图;

图2为散热层结构示意图;

图3为多孔纤维结构示意图;

图4为轴套本体俯视结构示意图;

其中,轴套本体1、基座2、润滑铜粉层3、钢板层4、环氧结构胶层5、含氟层聚酰亚胺薄膜层6、聚酰亚胺薄膜一侧61、氟材料一侧62、导热胶层7、散热层8、氧化锌层9、多孔纤维10、气凝胶11、带孔纤维12、多孔纤维胶层13、石墨烯层结构14、折边15。

具体实施方式

下面结合附图以及实施例对本发明作进一步描述:

实施例一

参见附图1-4,散热自润滑轴套包括圆柱形轴套本体1与基座2,轴套本体包括润滑铜粉层3、钢板层4、环氧结构胶层5、含氟层聚酰亚胺薄膜层6、导热胶层7、散热层8、氧化锌层9;散热层包括多孔纤维10、气凝胶11;多孔纤维位于气凝胶中;多孔纤维包括带孔纤维12、多孔纤维胶层13;多孔纤维胶层位于带孔纤维外表面;多孔纤维胶层的孔中设有石墨烯层结构14;润滑铜粉层、钢板层、环氧结构胶层、含氟层聚酰亚胺薄膜层、导热胶层、散热层、氧化锌层依次设置,其中聚酰亚胺薄膜(12.5μm)一侧61与环氧结构胶层接触、氟材料一侧62与导热胶层接触,轴套本体与基座焊接连接,基座没有安装孔,基座设有折边15,折边高度为3毫米。折边就是将现有片状的基座边缘弯折九十度,像玻璃杯盖子似的。环氧结构胶为市购产品,具体为威伏ep3051,导热胶为汉高乐泰315,专为电子材料使用,导热性能很好。

上述含氟层聚酰亚胺薄膜层的厚度为18.5微米;气凝胶结构的孔隙率为40%;多孔纤维胶层的孔隙率为70%;散热层的厚度为50微米;导热胶层的厚度为0.6微米;环氧结构胶层的厚度为0.25微米;氧化锌层的厚度为25纳米。图中石墨烯结构、纤维、铜颗粒等只标注一处,气凝胶的孔隙未标示,不影响本领域技术人员的理解。

对比例一

圆柱形轴套本体包括润滑铜粉层、钢板层,其他与实施例一一样。

对比例二

圆柱形轴套本体包括润滑铜粉层、钢板层、环氧结构胶层、含氟层聚酰亚胺薄膜层。上述含氟层聚酰亚胺薄膜层的厚度为18.5微米;环氧结构胶层的厚度为0.25微米,其他与实施例一一样。

上述实施例中,含氟层聚酰亚胺薄膜层(12.5/6μm)来自凯英薄膜,润滑铜粉层、钢板层的烧结为现有技术,各层的制备也为现有技术,利用钢板弯曲强度测试仪测试(中创)弯曲强度;以对比例一为基础比较,性能测试发现,实施例一的轴套本体(卷之前的板材)弯曲强度提高1.62倍,散热能力为0.91倍;对比例二的轴套本体弯曲强度提高1.19倍,散热能力为0.65倍;散热层厚度变大、变小时,散热性能、弯曲性能较实施例一下降;采用剥离力测试仪测试比较,如果不设置环氧结构胶层,含氟层聚酰亚胺薄膜层剥离性能下降60%多。另外,与之前制备的铜颗粒散热型自润滑轴承板材(制备轴套本体前的材料)相比,本发明的结构不会影响润滑铜粉的性能,产品良率100%(1000块板材),而铜颗粒散热型自润滑轴承板材产品良率仅为26%(50块板材),其中37块板材的润滑铜粉层由于二次烧结都不符合使用要求。采用震动台模拟轴承运行震动,比较发明人之前专利公开的安装孔与本发明折边结构对安装的稳定性,分别为用螺丝与现有支架固定以及用法兰与现有支架固定(法兰将折边全部包压住,为常规方法),持续震动20天,每天观察,发现之前开孔螺丝略有松动,而法兰固定毫无松动痕迹;同时采用在折边内侧设置0.5毫米橡胶层(常规做一个橡胶圈垫着)进行比较,20天也不见松动,而且肉眼可见带有橡胶层的轴套晃动小于不带橡胶的轴套。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1