减压阀的制作方法

文档序号:21203516发布日期:2020-06-23 19:36阅读:301来源:国知局
减压阀的制作方法

本公开涉及一种用于核反应堆的被动减压阀。



背景技术:

由于核反应堆呈现为理想的基本负载站,核反应堆是对电网的期望的添加。这是因为它们被认为是低碳的电来源,并且不依赖于可变的天气条件(其是其它低碳来源的限制因素)。这些特征允许它们被用作完整的电网的支柱。在全世界使用的最常见类型的核反应堆中的一种是加压水反应堆(pwr),在其中主回路的加压水用作冷却剂、缓和剂以及到蒸汽发生器的热传输流体。系统的相对简单性为它们提供了这些系统可以改变规模的优点。因此,它们适用于大规模发电厂以及小规模模块化反应堆两者。然而,与所有核电站一样,它们需要稳定的安全系统来防止事故。

用于核反应堆的现代安全系统的目标是成为主动的和被动的两者。主动系统在操作者和/或运行系统(诸如泵和发电机)的控制下操作,所述泵和发电机在正常操作中与紧急控制相关联。被动安全系统不需要任何外部操作者输入或主动系统运行以便操作。此后者的系统是有益的,因为其允许对不需要外部电力或用户输入的系统的自动自控制。在紧急情况下,这是期望的,因为在某些情况下,到反应堆的电力可能被中断,或者操作者可能不能手动地控制系统,在这种情况下,被动控制系统允许系统保持安全。

在加压水反应堆的情况下,主要的安全顾虑之一是冷却剂损失事故(loca)的情况,在其中进入到反应堆中的冷却水损失并且如未被改正则将导致核反应堆的故障。这是因为在没有冷却剂的情况下,由反应堆的燃料棒内的放射性衰变产生的热量将增加到反应堆被损坏的点。这可能导致严重的核事件。这可发生的方式之一是如果冷却剂沸腾,其能够导致燃料包壳的熔化和裂变产物的释放。因此,为了防止发生这种情况,核反应堆配备有紧急冷却系统,如果存在故障,该紧急冷却系统可以替换冷却水。在pwr中,防止这种情况的系统被称为紧急堆芯冷却系统(eccs)。这些系统典型地涉及打开管道以排放本反应堆冷却剂。用于此的排放工程管工业设计成提供足够的容量以去除加热的冷却剂,同时维持低的反应堆回路压力。为了替换此排放的冷却剂,新鲜的冷却剂在重力下被注入到系统中。这些排放管道通常使用隔离阀与反应堆隔离,所述隔离阀可在检测到loca时打开。典型地,这涉及用来监控厂的参数的仪器、用来在到达设定点时生成启动信号的控制系统以及用来改变阀位置的阀致动器。

在loca的情况下实现冷却剂与冷却流体的紧急供应的这种隔离的系统在本领域中是已知的。在正常操作期间,当反应堆回路中存在压力减小时,使用累积器隔离被动阀(aipv)来隔离处于55巴的加压累积器和处于70巴的堆芯,该阀与位于上游的累积器和下游的反应堆回路和堆芯之间的压力差成比例地打开。对于aipv,由于阀位置与压力差成比例,所以一旦压力均衡,由于反应堆回路压力的恢复或累积器压力的排放,则阀闭合,再次隔离管线。因此,阀不会保持锁定打开以允许完全的系统减压。备选地,用于累积器减压的自动安全阀(asvad)的阀可以被使用。当由系统中的压力施加的力下降到低于由作用在阀柱塞上的弹簧施加的力设定的水平时,这些被用于通过打开阀来从累积器的气体空间排出气体。asvad阀不是通常意义上的隔离阀,而是专门设计用于气体的排出。因此,其不适合于高压、高温水的隔离。由于阀既不基于温度操作,也不能在其中系统压力和温度升高的完整回路故障瞬变的情况下打开,因此需要改进。westinghouse的ap1000反应堆设计的特征是用于排放加热的冷却剂的阀——被称为爆管(squib)阀。爆管阀配备有用于打开阀的爆炸性填料;然而,爆管阀的谬误操作可能导致较大的放射危害。因此,厂的设计的安全调整依赖于高度可靠的控制和仪器(c&i)系统以防止谬误操作,并且因此为厂的设计添加了显著成本。因此,期望开发简化的被动阀,以允许冷却剂回路的减压。



技术实现要素:

根据第一方面,提供了一种用于冷却回路的减压阀,其包括:具有活塞和阀杆的主阀,其定位在主腔室中,主腔室经由具有次级阀的先导管线连接至流体供应,以及泄放管线,其中流体经由先导管线进入主腔室,所述先导管线具有比泄放管线更低的流体阻力;并且其中在使用中主腔室中的流体的压力将主阀维持在关闭位置,并且在极端条件下借助于先导管线上的次级阀的关闭,流体被防止进入主腔室,并且减小阀的压力,将其移动到其打开位置。

打开的阀作为被动阀的使用允许堆芯回路的完全减压。此外,阀可应用于在其中能够定位阀的多种配置中。因此,该阀用作相对于现有技术的改进,并且不需要爆管所需的爆炸性填料。

先导管线上的次级阀可以是马格诺阀(magnovalve)。

先导管线上的次级阀可以是高压锁定隔离阀。

提升阀可用于进一步将主腔室从先导管线密封。

减压阀可以定位在自动隔离阀的上游。

泄放管线可以提供在主腔室外部。

泄放管线可以提供在主腔室内部。

根据第二方面,提供了一种核反应堆,其包括如以上讨论的减压阀。

技术人员将领会的是,除了相互排斥的情况之外,关于以上方面中的任何一个描述的特征可以在必要的修正后应用于任何其它方面。此外,除了在相互排斥的情况下,本文中描述的任何特征可以应用于任何方面和/或与本文中描述的任何其它特征组合。

附图说明

现在将仅作为示例参考附图来描述实施例,在所述附图中:

图1是本公开的自动减压阀的第一实施例的示意图;

图2是本公开的自动减压阀的第二实施例的示意图;以及

图3是本公开的自动减压阀的第三实施例的示意图。

具体实施方式

提供紧急堆芯冷却系统(eccs)以确保当事故条件出现时核反应堆的安全停机。冷却系统被配置为在多种事故条件的情况下提供安全机构。存在多个进入形成eccs的子系统,其各自具有冗余,使得即使子系统之一中存在故障,也可以安全地使反应堆停机。这里特别感兴趣的是被动系统,诸如自动减压系统(ads),其由打开以使主冷却剂系统减压并且允许较低压力紧急冷却剂系统起作用的两个阀构成。因为低压力冷却剂注入系统具有比高压力系统更大的冷却能力,所以这些在使反应堆停机中的有效操作是非常重要的。

被动减压(pad)阀是通常闭合的阀,其位于从反应堆回路延伸的排放管道中。其提供与位于同一排放管线中的其它控制系统启动/致动的隔离阀隔离的第二且不同的方法。pad阀被设计成在检测到阀上游的增加的温度和/或减小的压力时从闭合状态改变到打开状态。并入这种系统的优点在于,阀将在显著的loca或升高的反应堆回路温度的情况下打开,以排放反应堆冷却剂并允许新鲜的冷却剂在重力下的注入。这种操作的示意性示例在图1中示出。在此pad阀100中,具有安装在压缩弹簧102上的主阀101,其由流体压力迫使向下以处于关闭位置。然而,当流体压力下降时,弹簧推动联接到阀杆103的阀活塞向上并打开主阀101。正是通过阀活塞和杆相对于其所连接到的冷却剂系统管道的移动,导致主阀打开和关闭。在主阀处于闭合/关闭位置的情况下,上游反应堆冷却剂回路中的流体经过旁路或先导管线104。系统中的压力也足够高以迫使打开先导提升阀105并且以迫使联接到主阀101的阀杆103的阀活塞向下进入关闭位置。当自动启动阀(aiv)106闭合并且主阀弹簧保持被反应堆回路压力压缩时,系统保持在此位置。如果aiv由控制和仪器(c&i)系统打开(这在低回路压力或高反应堆流体温度的情况下发生),则流体经由泄放管线108从主腔室107逸出。如果流体温度超过了马格诺阀中的临界温度,则流体的这种逸出将伴随着次级阀109的自动关闭。aiv的打开和次级阀的关闭将导致反应堆回路中以及最终在主腔室中的压力的减小,使得主阀可以打开,因为没有足够的压力作用在阀机构弹簧上以保持其关闭。次级阀109可以采取各种形式,例如它可以是马格诺阀。

泄放管线108被配置成使得沿泄放管线向下的流体流的阻力比通过先导管线的流体流的阻力更高。在谬误aiv打开的情况下,流体的小的缓慢泄漏经过aiv,但是经由先导管线进入主腔室的流大于经由泄放管线到腔室外的流。因此,先导提升阀弹簧和主阀弹簧102保持被压缩,并且因此主阀101维持闭合。只要在主腔室中存在足够的压力来压缩这些弹簧,就将发生这种状态。在loca以及aiv的后续打开的情况下,在反应堆回路压力未被维持情况下,由先导管线中的反应堆回路流体压力提供的力下降到低于先导提升弹簧力的水平,从而导致先导提升阀的闭合。这切断从反应堆回路到主腔室的流,并且主阀腔室中的流体经由泄放管线逸出。这导致由流体压力施加在主阀弹簧上的力下降,从而允许弹簧延伸并因此打开主阀。

在完整回路故障和后续的aiv打开的情况下,反应堆回路流体温度升高。反应堆回路冷却剂经过先导管线,通过主阀腔室,并沿着泄放管线向下,直到达到采用马格诺阀形式的次级阀109的跳闸温度,这使得次级阀闭合。因此,次级阀109的关闭切断从先导管线进入主阀腔室107的水流。因为没有流体进入主腔室并且存在于其内的流体能够经由泄放管线逸出并且主阀腔室压力下降。这允许先导提升阀的弹簧克服流体压力的力,使先导提升阀105闭合,其中主腔室密封于到来的水,其能够减压并导致主阀101打开。在主阀101打开的情况下,可以发生冷却剂系统的减压。

在该配置中,主阀可以被配置为在大于阈值的温度(即,高于大约312℃的正常平均操作温度)下打开。例如,当冷却剂温度达到约330℃时,主阀可以被设定为打开。它也可以在高于约335℃或约340℃较高的温度下打开。在选择主阀打开温度时,设计必须考虑冷却剂温度内的波动并且在这些波动期间不打开,但是在将超过正常操作参数的水平下打开。提升阀可以设定为在低于大约155巴的正常操作压力的任何适合的压力下关闭。例如,这可以在大约70巴。它也可以在高于70巴的压力下(诸如在大约75、80、85、90巴)或在较低的压力下(诸如在大约65、60、55或50巴)。

在此实施例中,阀布置提供了将反应堆回路与排放位置隔离直到需要的积极手段。主阀的固有设计和马格诺阀和提升阀的使用允许主阀基于低压力和高温条件两者的打开。这样的配置具有如下益处:在单个谬误aiv阀打开或在c&i故障的情况下将不会导致显著的危害。

pad阀200的第二实施例去除了对先导提升阀的需求;此实施例在图2中示出。此配置在操作上类似于在图1中示出的实施例的配置。主阀201在正常操作中在回路内维持在关闭位置。通过来自冷却剂回路的流体压力将其维持在此位置中,所述冷却剂回路经过先导管线204进入在联接到阀杆203的阀活塞的背面处的主腔室207中。流体通过在阀活塞上施加力并迫使压缩弹簧202向下而起作用,使得主阀维持在关闭位置中。还提供泄放管线208以维持通过腔室的流体流。泄放管线比先导管线更窄,使得主腔室中的压力被维持。先导管线提供有次级阀209,例如,其可采用热激活的马格诺阀的形式;这意味着,如果流体温度升高到一定极限以上,则马格诺阀关闭并停止到主腔室中的流体流。随着对到主腔室中的流的限制,泄放管线的存在允许流体从主腔室逸出。马格诺阀是磁性阀,其在被加热到阀材料的居里点温度之上时,失去其磁性并且因此允许阀的与此状态改变相关的移动,从而允许阀打开和/或关闭。因此,这降低了作用在阀活塞上的压力,由此压缩弹簧202可以扩展,并且主阀201可以打开以允许流体经由aiv206从主反应堆回路排出。先导提升阀的去除具有减少系统内的部件的数量的益处,但是去除了提升阀的密封效果以及其提供的额外压力控制,这是由于其相对于主阀操作所处的压力的更高的准确度。

作为使用用于次级阀209的马格诺阀的备选方案将是使用可熔的旋塞阀,这利用旋塞中的低熔点材料来熔化和密封阀(如果温度上升)。这导致阀的永久密封,并且因此在密封上非常有效,然而在操作之后它们将需要被替换。另一备选方案是使用共晶阀,其也如将熔化共晶材料那样作用以密封次级阀,这将导致主阀的打开。

在图3中呈现了本公开的pad阀300的第三实施例。在此示例中,次级阀309并入安装在先导管线304上的高压力锁定隔离阀310;这如压力感测管线那样作用。此管线不是在热设定点上工作以用于阀的关闭,而是其在检测到高压力时闭合。锁定阀可以被设定为在冷却回路的正常操作之外的任何适合的压力下关闭。例如,可以将锁定阀设定为在16.5mpa下关闭。阀还可设定为在高于此的压力(例如在约16.6、16.7、16.8、16.9、17、17.1、17.2、17.3、17.4、17.5mpa或更高)下关闭。或者更低,例如在约16.4或16.3、16.2、16.1或16mpa下。在反应堆的正常操作期间,冷却剂的典型压力将导致流体沿着虚线流动。此压力还将提升阀保持在打开位置中。然而,如果回路中的压力由于loca情况而下降,则作用在提升阀305上的较低压力将不足以将提升阀维持在打开位置。因此,提升阀将关闭,并且流体可以从主腔室沿着泄放管线308向下流动;这导致主腔室307中的压力的减小。这继而将减小作用在联接到阀活塞和杆303的阀活塞上的压力,使得压缩弹簧302可以扩展并且主阀301能够打开并且流体可以向下流动到aiv306。在另一方面,如果压力增加(其可与完整回路故障相关联),则系统中的流体压力迫使高压力锁定隔离阀310向上,因此关闭通过压力释放阀的流体流路径。在缺少到主腔室中的流体流的情况下,当流体能够经过泄放管线并且减小主腔室中的压力时,此腔室内的压力减小,因此打开主阀。尽管这被示出为直通设计,但是将领会的是,此配置也适合在成角度的设计中使用。也类似于在图1&2中示出的那样。

尽管已经根据核反应堆描述了以上实施例,但是将领会的是,设备可以用于任何其它系统中,在其中重要的是如系统达到低于或高于其正常操作压力的压力时对系统进行减压或排放加压的系统的内容物。类似地,它可以用于任何类似的系统中,其中如温度增加到设定点之上时,这样的排放/减压是重要的。如本领域的技术人员将领会的,这些阀可以被配置成在具有常规修改的从打开到闭合情形的不同情况中工作。

将理解的是,本发明不限于上述实施例,并且在不脱离本文中所描述的概念而是在以下权利要求的范围内的情况下,可以进行各种修改和改进。除了相互排斥的情况之外,任何特征可以单独地或与任何其它特征组合地采用,并且本公开延伸到并且包括本文中描述的一个或多个特征的所有组合和子组合。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1