一种双阻尼系统的主动冲击缓冲装置及其缓冲控制方法与流程

文档序号:21083110发布日期:2020-06-12 16:42阅读:284来源:国知局
一种双阻尼系统的主动冲击缓冲装置及其缓冲控制方法与流程

本发明涉及主动冲击缓冲领域,特别是一种双阻尼系统的主动冲击缓冲装置及其缓冲控制方法。



背景技术:

冲击缓冲装置有主动式和被动式两种,主动式冲击缓冲装置较被动式对于减振器的要求不高,上端支撑架和下端安装架分离更加可靠的保证了被减振机构的减振效果。普通的分离式冲击缓冲装置使用的是弹簧阻尼机构,在其冲击后上端支撑架和下端安装架分离,冲击产生的能量通过弹簧阻尼机构传递,但是冲击瞬间产生的能量依然较大。



技术实现要素:

本发明是为解决上述现有技术所存在的不足,提供一种双阻尼系统的主动冲击缓冲装置及其缓冲控制方法,以期能保证装置遇冲击时的有效减振,从而保护被减振装置。

本发明为解决技术问题采用如下技术方案:

本发明一种基于双阻尼系统的主动冲击缓冲装置的特点是包括:上端支撑架、双阻尼系统、下端安装架、永磁体、压缩弹簧和电磁铁;

在所述上端支撑架两侧的矩形管内分别设置有所述永磁体;在所述下端安装架两侧的矩形管内分别设置有所述电磁铁;所述电磁铁与永磁体同轴设置;

在所述上端支撑架中间的矩形管与下端安装架中间的矩形管之间设置有所述双阻尼系统;

在所述双阻尼系统的两侧,并处于所述上端支撑架与下端安装架之间分别设置有所述压缩弹簧;

所述双阻尼系统是由两个磁流变阻尼器、齿轮、齿条组成;

两个磁流变阻尼器的输出端固连后固定在所述上端支撑架上,两个所述磁流变阻尼器的输入端分别与所述齿条固连;所述齿条之一固定连接在所述下端安装架上;

所述齿轮设置在所述齿轮轴上,并与所述齿条配合,所述齿轮轴与所述下端安装架固连同时通过所述拉伸弹簧连接在所述下端安装架上。

本发明所述的主动冲击缓冲装置的特点也在于:所述压缩弹簧为四根且沿磁流变阻尼器周向均匀分布。

本发明所述的主动冲击缓冲装置的缓冲控制方法的特点是按如下步骤进行:

步骤1、在所述底板上设置有加速度传感器;

步骤2、获取所述加速度传感器的加速度信号时,并判断所述加速度信号是否小于所设定的阈值,若小于,则表示未遇到冲击,并执行步骤3,否则,表示遇到冲击,并执行步骤4;

步骤3、控制器控制电流源维持通入所述电磁铁正向电流,使得所述电磁铁与永磁铁相互吸引,并在所述压缩弹簧的作用下,保持所述上端支撑架与下端安装架之间的连接;

步骤4、控制器控制电流源为所述电磁铁提供反向电流,使得所述电磁铁与永磁体相互排斥,并带动所述上端支撑架和下端安装架分离,同时,所述齿轮轴与所述下端安装架固连解除,所述拉伸弹簧通过所述齿轮轴带动所述齿条朝向所述下端安装架方向运动。

与已有技术相比,本发明有益效果体现在:

1、本发明的主动冲击缓冲装置,是由两个阻尼器和一个齿轮齿条机构替代传统的单阻尼器,通过齿轮齿条机构让两个磁流变阻尼器的输入端运动方向始终相反,在冲击缓冲装置的瞬间双阻尼系统在耗散冲击能量之时,通过调节两个磁流变阻尼器的阻尼系数大小实现了阻尼机构部分传递到上端支撑架的力较小,更加有效的保护了被减振装置。

2.本发明的缓冲控制方法是双阻尼系统减振装置减振方法,包括判断是否遇到冲击以及在遇到冲击之后控制上端支撑架与下端安装架分离;该装置通过控制器接收加速度信号,在加速度超过预设阈值后改变电磁铁输入电流的方向,实现了上端支撑架与下端安装架分离;主动控制方法在冲击瞬间,实现了上端支撑架与下端安装架分离,有效降低了遇到冲击瞬间传递到被减振装置的冲击。

3.本发明的装置及其方法是基于磁流变或电流变效应,具有响应快、可调范围宽等特点。

附图说明

图1为本发明主动冲击缓冲装置的示意图;

图2为图1的弹簧分布的示意图;

图3为本发明双阻尼系统原理图;

图4为本发明缓冲控制方法的流程图;

图中标号:1上端支撑架,2双阻尼系统,3下端安装架,4底板,5永磁体,6压缩弹簧,7拉伸弹簧,8电磁铁,9齿轮,10齿轮轴,11磁流变阻尼器,12齿条。

具体实施方式

本实施例中,如图1所示,一种基于双阻尼系统的主动冲击缓冲装置是由减振装置总成、控制器、电流源构成,其中,减振装置总成包括:上端支撑架1、双阻尼系统2、下端安装架3、永磁体5、压缩弹簧6和电磁铁8;

在上端支撑架1两侧的矩形管内分别设置有永磁体5;在下端安装架3两侧的矩形管内分别设置有电磁铁8;电磁铁8与永磁体5同轴设置;

在上端支撑架1中心位置与下端安装架3中心位置之间设置有双阻尼系统2;

在双阻尼系统2的两侧,并处于上端支撑架1与下端安装架3之间分别设置有压缩弹簧6;具体实施中,如图2所示,压缩弹簧6为四根且沿磁流变阻尼器11周向均匀分布。

双阻尼系统2是由两个磁流变阻尼器11、齿轮9、齿条12组成;

如图1和图3所示,两个磁流变阻尼器11的输出端固连后固定在上端支撑架1上,两个磁流变阻尼器11的输入端与齿条12固连;齿条12固定连接在下端安装架3上;

齿轮9设置在齿轮轴10上,并与齿条12配合,齿轮轴10与下端安装架3固连同时通过拉伸弹簧7连接在下端安装架3上。

本实施例中,如图4所示,基于该主动冲击缓冲装置的缓冲控制方法是按如下步骤进行:

步骤1、在底板4上设置有加速度传感器;

步骤2、控制器获取加速度传感器的加速度信号时,并判断加速度信号是否小于所设定的阈值,若小于,则表示未遇到冲击,并执行步骤3,否则,表示遇到冲击,并执行步骤4;

步骤3、控制器控制电流源维持通入电磁铁8正向电流,使得电磁铁8与永磁铁5相互吸引,并在压缩弹簧6的作用下,保持上端支撑架1与下端安装架之间的连接;

步骤4、控制器控制电流源为电磁铁8提供反向电流,使得电磁铁8与永磁体5相互排斥,并带动上端支撑架1和下端安装架3分离,同时,齿轮轴10与下端安装架3固连解除,拉伸弹簧7通过齿轮轴10带动齿轮9朝向下端安装架3方向运动。

两根齿条12与两个磁流变阻尼器11同轴固定连接,通过一个齿轮9保证两个磁流变阻尼器11的输入端相对于齿轮9的运动方向始终相反。定义速度方向向上为正,双阻尼系统2的输出力关系如下:

fl=clvl(1)

fr=crvr(2)

vl-vgear=vgear-vr(3)

fout=fl+fr(4)

式(1)-式(4)中:fl是左端磁流变阻尼器11的输出力大小;fr是右端磁流变阻尼器11的输出力大小;cl是左端磁流变阻尼器11的阻尼系数;cr是右端磁流变阻尼器11的阻尼系数;vl是左端磁流变阻尼器11的激励速度;vr是右端磁流变阻尼器11的激励速度;vgear是齿轮9相对于地面的速度;fout是双阻尼系统2的输出力;

在冲击的瞬间当冲击缓冲装置控制系统接收到冲击信号时候,齿轮轴10与上端支撑架1原本的固定连接解除同时在预紧的拉伸弹簧7的作用下向下运动,齿轮9相对于地面的速度小于左端磁流变阻尼器11的激励速度。根据式(3),则右端阻尼器11的激励速度小于左端磁流变阻尼器11的激励速度甚至可能方向相反。根据式(4),冲击瞬间通过调节两个磁流变阻尼器11的阻尼系数大小,能够实现在耗散同等冲击能量条件下输出到上端支撑架1力较小。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1