一种盘式电机协同面凸轮驱动伸缩式无摩擦球阀的制作方法

文档序号:23343501发布日期:2020-12-18 16:42阅读:113来源:国知局
一种盘式电机协同面凸轮驱动伸缩式无摩擦球阀的制作方法

本发明涉及无摩擦球阀领域,具体涉及一种盘式电机协同面凸轮驱动伸缩式无摩擦球阀。



背景技术:

我国作为石油运输、消耗大国,用于石油运输的管道总长度已经超过2万公里,并且呈逐年递增趋势。而球阀作为调节管道流量的重要部件被广泛应用于油、气运输管线路中。由于球阀具有流体阻力小,启闭速度快和操作简单等特点,因此广泛使用在在石油、化工、电站等行业。球阀的密封是通过球体和阀座之间预先设定的预紧力加上液体压力在阀座密封面上引起的作用力形成的。

传统球阀普遍存在着以下缺陷:①、在阀门的开启与关闭过程中,球体始终与阀座紧密贴合,旋转时摩擦力大,长期多次使用后,球体与阀座磨损现象严重。②、长期频繁操作后,阀芯产生磨损使阀门在导通或关闭状态下会产生泄露等不良状况,使用寿命较短。③、启闭操作十分费力,常常受到使用环境包括流动截止温度、压力的限制。大型的球阀其驱动装置设计也不够完善,减速器等部分体积较大,不利于安装等问题都影响了其使用性能,难以满足现代工业生产的需要。

目前市场上存在的无摩擦球阀可分为两大类。一类是偏置式无摩擦球阀,通过偏心拨杆拨动阀芯整体沿底部中轴线产生偏移,阀芯与阀座脱离接触,进而使得开闭阀门过程无摩擦;另一类是轨道式无摩擦球阀,此类无摩擦球阀阀芯部分多为楔形阀芯,且阀芯阀瓣分开制作,相互配合移动,可将上下竖直位移转化为阀瓣的水平位移进而达到无摩擦的效果。上述两大类无摩擦球阀也都存在传动机构设计复杂,且偏置式的无摩擦偶发密封效果存在较大缺陷,不可在关键管路中使用。



技术实现要素:

为解决上述背景技术中存在的问题,本发明提出一种盘式电机协同面凸轮驱动伸缩式无摩擦球阀,将特种电机、面凸轮传动机构、阀瓣可伸缩脱离阀体的思想应用到传统的球阀设计中,从而达到动力元件精确控制,传动结构简单且效率高,阀芯和阀瓣旋转过程中与阀座脱离接触,从而达到无摩擦运动的目的。

本发明实现上述功能的技术方案是:一种盘式电机协同面凸轮驱动伸缩式无摩擦球阀,其特殊之处在于:

包括盘式电机上定子,盘式电机上定子与盘式电机下定子相固连,盘式电机上定子与盘式电机下定子内部安装有盘式电机转子,盘式电机转子与输出轴相固连,输出轴下半段部分固连有圆形滚子;

盘式电机下定子的下侧固连有传动机构安装架,传动机构安装架上设有第一销孔、第二销孔、第三销孔和第四销孔,第一销孔、第二销孔、第三销孔和第四销孔的外侧分别安装有第一电动推杆、第二电动推杆、第三电动推杆及第四电动推杆;

还包括传动筒,传动筒安装在传动机构安装架内部,传动筒的上半部分设置有弧形槽,圆形滚子伸入弧形槽内,传动筒的下半部分别设置有u形导向槽和i形导向槽;传动筒最末端通过销轴与阀芯轴相固连;

中空球形阀体固连在传动机构安装架的下端,中空球形阀体内部安装有正方体形阀芯;正方体形阀芯四个水平面上开设四个凹槽,分别为:第一凹槽、第二凹槽、第三凹槽、第四凹槽;其中第一凹槽和第二凹槽相对,安装两个关位阀瓣,第三凹槽、第四凹槽相对,安装两个开位阀瓣;

阀芯轴底部插入正方体形阀芯上顶面中心的方形孔内,正方体形阀芯的上顶面上四条边分别开设有长方形的第一滑道、第二滑道、第三滑道以及第四滑道,第一滑道,第二滑道,第三滑道以及第四滑道内部分别安装有第一滑块,第二滑块,第三滑块和第四滑块;第一滑块和第二滑块前端固连在关位阀瓣的背面,第三滑块和第四滑块前端固连在开位阀瓣的背面;滑块另一端分别由第一曲柄、第二曲柄、第三曲柄,第四曲柄与阀芯轴相连;

阀芯下底面的中心处存在圆孔,圆孔中插入上端光轴下端螺纹式泄放螺栓的上半光轴段,上端光轴下端螺纹式泄放螺栓下半螺纹段的与中空球形阀体固连密封。

进一步地,上述传动机构安装架上圆周均布有第一销孔、第二销孔、第三销孔和第四销孔。

进一步地,上述上端光轴下端螺纹式泄放螺栓下半螺纹段的与中空球形阀体通过螺纹形成固连密封。

本发明的优点:

1、本发明采用具有低转速、大扭矩特点的盘式电机作为动力源,适合该无摩擦球阀的工作原理,不经过减速机构从而直接驱动传动机构和阀芯,控制精度更高,响应速度更快;

2、本发明的传动机构组成部件更少,克服了传统的轨道式无摩擦球阀传动轨道结构复杂,传动精度低的缺陷,具有更高的传动效率,传动精度也更高;

3、本发明阀体部分采用阀芯安装阀瓣、阀瓣可以伸缩的结构,能够达到阀瓣与阀体的脱离,进而使阀工作过程中不存在摩擦,克服了以往楔形阀芯在上移过程中仍存在摩擦的问题,使得阀体寿命大大延长;

4、本发明阀瓣依靠曲柄连杆机构实现阀瓣的水平位移,不需要另一套多余的动力机构来满足这一运动需求,节省了设计空间;

5、本发明阀芯的底部的凹槽配合特殊的泄放螺栓设计,可以起到阀芯旋转过程的支撑导向作用,在阀门状态切换完毕后,拧出泄放螺栓可以排除切换过程中残存的液体。

附图说明

图1为本发明实施例中球阀完全关闭时剖面结构图;

图2为本发明实施例中球阀完全开启时剖面结构图;

图3为本发明第一销孔41圆心高度处的剖视图;

图4为本发明中关键部件传动筒5的结构图;

图5为图4的另一个方向视图;

图6为本发明中伸缩式阀芯部分整体结构轴侧图;

图7为本发明中部件阀芯9轴侧图;

图8为本发明中部件开位阀瓣16的结构图;

图9为本发明中关位阀瓣7的结构图;

图10为本发明中部件阀芯轴12的轴侧图。

图中:1、盘式电机上定子;2、盘式电机转子;3、盘式电机下定子;4、传动机构安装架;41、第一销孔;42、第二销孔;43、第三销孔;44、第四销孔;45、第一电动推杆;46、第二电动推杆;47、第三电动推杆;48第四电动推杆;5、传动筒;51、u形导向槽;52、i形导向槽;53、弧形槽;6、中空球形阀体;7、关位阀瓣;8、上端光轴下端螺纹式泄放螺栓;9、正方体形阀芯;91、第一滑道;92、第二滑道;93、第三滑道、94、第四滑道;95、方形孔;96、圆孔;97、第一凹槽;98、第二凹槽;99、第三凹槽;910、第四凹槽;101、第一滑块;102、第二滑块;103、第三滑块;104、第四滑块;111、第一曲柄;112、第二曲柄;113、第三曲柄;114、第四曲柄;12、阀芯轴;13、销轴;14、滚子;15、输出轴;16、开位阀瓣。

具体实施方式

为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。

如图1~图10所示,一种盘式电机协同面凸轮驱动伸缩式无摩擦球阀,包括盘式电机上定子1,盘式电机上定子1与盘式电机下定子3相固连,盘式电机上定子1与盘式电机下定子3内部安装有盘式电机转子2,盘式电机转子2与输出轴15相固连,输出轴15下半段部分固连有圆形滚子14。传动机构安装架4固连在盘式电机下定子3的下侧,传动机构安装架4上均布有第一销孔41、第二销孔42、第三销孔43和第四销孔44,第一销孔41、第二销孔42、第三销孔43和第四销孔44的外侧分别安装有第一电动推杆45、第二电动推杆46、第三电动推杆47及第四电动推杆48。传动筒5安装在传动机构安装架4内部,传动筒5的上半部分设置有弧形槽53,弧形槽53内镶嵌有圆形滚子14,传动筒5的下半部分别设置有u形导向槽51和i形导向槽52。传动筒5最末端通过销轴13与阀芯轴12相固连。中空球形阀体6固连在传动机构安装架4的下端。中空球形阀体6内部安装有正方体形阀芯9。正方体形阀芯9四个水平面上开设四个凹槽,第一凹槽97、第二凹槽98、第三凹槽99、第四凹槽910。其中第一凹槽97和第二凹槽98相对,安装两个关位阀瓣7。第三凹槽99、第四凹槽910相对,安装两个开位阀瓣16。阀芯轴12底部插入正方体形阀芯9上顶面中心的方形孔95内。正方体形阀芯9的上顶面上四条边分别开设有长方形的第一滑道91、第二滑道92、第三滑道93以及第四滑道94。第一滑道91、第二滑道92、第三滑道93以及第四滑道94内部分别安装有第一滑块101、第二滑块102、第三滑块103和第四滑块104。第一滑块101和第二滑块102前端固连在关位阀瓣7的背面,第三滑块103和第四滑块104前端固连在开位阀瓣16的背面。滑块另一端分别由第一曲柄111、第二曲柄112、第三曲柄113、第四曲柄114与阀芯轴12相连。阀芯9下底面的中心处存在圆孔96,圆孔96中插入上端光轴下端螺纹式泄放螺栓8的上半光轴段,上端光轴下端螺纹式泄放螺栓8下半螺纹段的与中空球形阀体6通过螺纹形成固连密封。

其中,图1为球阀关闭状态剖面图,滚子14处在弧形槽53的最高点位置,u形导向槽51的竖直一边不是与i形导向槽相对的那一边的上端处于与第一销孔41完全重合的位置,i形导向槽52处于剖视图视图方向的相反面,其上端与第三销孔43完全重合,在此剖视图中不可见。传动机构处于上述位置时,阀芯轴12则处于竖直高度的最低点,末端正方形轴段插入正方体形阀芯9顶面中心的方形孔95最底部,通过第一曲柄111、第二曲柄112分别顶出第一滑块101和第二滑块102处于各自滑道最外端,关位阀瓣7处于顶出状态,阻断流体,阀门关闭。

图2为阀门开启的状态,相较于图1的阀门关闭状态,传动机构整体以及正方体形阀芯9整体结构均已旋转了90°,此时的u形导向槽51的另一竖直边处在最高点与销孔41完全重合位置,i形导向槽52逆时针旋转90°后出现在了剖面中,最高点与销孔42完全重合,弧形槽53的最低段处于剖面可视位置处。开位阀瓣16顶出贴合流道,阀门打开。

参见图4、图5,弧形槽53的竖直高度变化量即为阀芯轴12的上升或下压位移量。图6与图7所示正方体形阀芯9顶面的4个滑道所在位置,每个滑道左右两面存在凸起边,与4个滑块侧面凹槽相配合,由此限制4个滑块不能在竖直方向离开滑道。图10为阀芯轴12是4段阶梯轴。最上端开出的销孔用于安装传动的销轴13,次级无作用,再次级的一段为正方形柱体,4个面存安装第一曲柄111,第二曲柄112,第三曲柄113,第四曲柄114,最底段正方形柱体段插入正方体形阀芯9顶面中心的方形孔95,用于传递旋转90°的运动。

本发明的工作原理为:

1、本发明阀门由关闭转换到开启的过程:第一销孔41外的第一电动推杆45伸出,插入至传动筒5上u形导向槽51竖直边顶部穿过为止,盘式电机上定子1和盘式电机下定子3通电,带动盘式电机转子2以及输出轴15逆时针旋转,滚子14一同逆时针旋转。由于第一销孔41插入的第一电动推杆45此时处于u形导向槽51的竖直边上,使传动筒5无法旋转,当滚子14沿着弧形槽53旋转,因弧形槽53的斜向下的形状,传动筒无法跟随滚子14一起旋转,将转动转化为沿着u形导向槽51竖直边开始竖直向上运动,滚子14转动至弧形槽53最低端,此时传动筒5整体已经上升至u形导向槽51底边与第一销孔41高度一致。传动筒5底部通过销轴13带动阀芯轴12竖直上升,阀芯轴12上升带动第一曲柄111、第二曲柄112、第三曲柄113、第四曲柄114的末端抬升,进而拉动第一滑块101、第二滑块102、第三滑块103和第四滑块104沿各自滑道向中心方向移动,进而带动关位阀瓣7向中心方向移动,此时关位阀瓣7的球面即与中空球形阀体6内腔脱离接触。当上升运动完成后,输出轴15继续旋转,滚子14已经处在弧形槽53最低端,推动传动筒5一起逆时针旋转90°停止,第一销孔41插入的第一电动推杆45此时处在u形导向槽51另一竖直边的底部。i形导向槽52转到了其最底端与第二销孔42完全重合的位置,此时第二销孔42外的第二电动推杆46伸入直至i形导向槽52内部为止,第一电动推杆45收回。传动筒5旋转90°通过销轴13传递给阀芯轴12,其最底部正方形柱体段在上升后仍然处在阀芯9顶面中心的方形孔95内,因此可以带动阀芯9逆时针旋转90°至开位阀瓣16通孔与管路相平行。然后电机反转,此时输出轴15顺时针旋转,由第二销孔42外新插入的第二电动推杆46伸入了i形导向槽52最底端,滚子14沿着弧形槽53反方向运动,i形导向槽52内插入的推杆的限制,则传动筒5只能竖直向下运动。传动筒5带动阀芯轴12向下运动,进而带动第一曲柄111、第二曲柄112、第三曲柄113、第四曲柄114的下移,推动各自连接的滑块向外运动,进一步推动开位阀瓣16向外运动直到球面与中空球形阀体6内腔完全贴合,此时流体从开位阀瓣16流过,阀门打开。

2、本发明阀门由开启转换到关闭的过程:阀门的关闭过程与开启过程基本相同,都是阀芯轴12先竖直向上运动使阀瓣脱开接触,然后旋转90°,然后阀芯轴12竖直向下运动推出曲柄和滑块,进一步推动关位阀瓣7使其与中空球形阀体6内腔完全贴合。只是该过程中,u形导向槽51已经较上一过程已经旋转了90°,所以使用传动机构安装架4上的销孔时,变成第三销孔43和第四销孔44外的第三电动推杆47和第四电动推杆48先后进行与上一过程相同的动作即可。

3、本发明阀门状态切换完毕排放残余液体过程:上端光轴下端螺纹式泄放螺栓8的上端光轴部分在上述两个过程中均起到了对锥形阀芯运动的导向和限位作用。在状态切换完毕后,从外部旋转出上端光轴下端螺纹式泄放螺栓8与中空球形阀体6底部脱离,即可排出腔内残余液体。

以上所述仅为本发明的实施例,并非以此限制本发明的专利保护范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的系统领域,均同理包括在本发明的专利保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1