用于保护EUV源中的流体管线的装置的制作方法

文档序号:33457675发布日期:2023-03-15 02:52阅读:47来源:国知局
用于保护EUV源中的流体管线的装置的制作方法
用于保护euv源中的流体管线的装置
1.相关申请的交叉引用
2.本技术要求2020年7月15日提交的标题为“用于保护euv源中的流体管线的装置(apparatus for protecting fluid lines in an euv source)”的美国专利申请63/052,184的优先权,其全部内容通过引用并入本文。
技术领域
3.本公开涉及用于对用于产生极紫外辐射的系统中的源材料腔室加压的流体管线的保护。


背景技术:

4.极紫外(“euv”)辐射,例如具有的波长约为50nm或更小的电磁辐射(有时也称为软x射线),以及包括波长约为13.5nm的光,被用于光刻法中以在衬底(诸如硅晶片)上产生极小的特征。在此处和本文的其他地方使用了术语“光”,尽管可以理解使用该术语描述的辐射可能不在光谱的可见光部分中。
5.用于生成euv光的方法包括将源材料从液态转换成等离子态。源材料优选地包括具有在euv范围内的一条或多条发射谱线的至少一种元素(例如氙、锂或锡)。在一种此类方法中,通常称为激光产生的等离子体(“lpp”),可以通过使用激光束照射具有所需线发射元素的源材料来产生所需的等离子体。
6.源材料可以采取多种形式中的一种。它可以是固体或熔融的。如果是熔融的,它可以以几种不同的方式分配,诸如以连续流或液滴流的形式。作为示例,在接下来的大部分讨论中,源材料是作为液滴流分配的熔融锡。然而,本领域普通技术人员应理解,可以使用其他形式的源材料、源材料的形式和递送模式。
7.因此,一种lpp技术涉及生成源材料液滴流并且在真空腔室中用激光脉冲照射至少一些液滴。用更理论的术语来说,lpp光源通过将激光能量沉积到具有至少一种euv发射元素的源材料中来生成euv辐射,从而生成高度离子化的等离子体。
8.在这些离子的去激发和重组期间生成的高能辐射从等离子体向各个方向发射。在一种常见的装置中,近似垂直入射的反射镜(通常称为“收集器反射镜”或简称为“收集器”)被定位成收集、引导光,并且在一些装置中,将光聚焦到中间位置。然后,收集的光从中间位置中继到一组扫描仪光学设备并且最终到达衬底。
9.液滴流由诸如液滴生成器的源材料分配器生成。液滴生成器释放液滴的部分(有时称为喷嘴或喷嘴组件)位于真空腔室内。液滴生成器喷嘴组件需要源材料的持续供应。此源材料通常由保持在源材料腔室或一系列源材料腔室中的源材料的供应来供应。源材料必须从源材料腔室转移到喷嘴组件。这可以通过对熔融源材料加压并且使其流动穿过保持在源材料熔点以上的导管来实现。
10.在各个腔室中,熔融源材料经受压力下的流体,以驱动源材料通过加热的导管。流体通过流体供给管线被引入到储器中。因为熔融源材料还受到系统其他部分的压力,所以
熔融源材料有可能会充满腔室并且开始流入流体供给管线。这可能导致诸如源材料固化并且堵塞流体管线的问题。
11.此外,在多腔室系统中,存在用于不同目的的不同源材料腔室。例如,可能需要这些腔室之间的单向流动,以防止受污染的源材料流入净化的源材料并且与净化的源材料混合。
12.正是在这些上下文中,本文公开和要求保护的主题可能是有利的。


技术实现要素:

13.为了提供对实施例的基本理解,下面呈现了一个或多个实施例的简要的发明内容。此概述不是所有设想实施例的广泛综述并且不旨在识别所有实施例的关键或重要元素,也不描绘任何或所有实施例的范围。其目的是以简化的形式呈现一个或多个实施例的一些概念,作为稍后呈现的更详细描述的序言。
14.根据实施例的一个方面,公开了一种源材料阀,该源材料阀被放置在用于源材料腔室(诸如源材料再填充储器)的流体供给管线中,以防止腔室中的熔融源材料到达并且因此在压力故障的情况下污染和堵塞源材料阀上游的流体供给管线。
15.根据实施例的另一个方面,公开了一种用于控制来euv源中的源材料保持腔室的熔融源材料流动的装置,该装置包括限定空腔的阀体,该阀体具有适于被连接到流体供给管线的第一阀体端和适于被放置为与源材料保持腔室流体连通的第二阀体端,该空腔在更靠近第一阀体端的空腔的端部处具有座壁,内部部件被布置在空腔中并且适于从第一位置移动到第二位置,在第一位置,内部部件准许流体流动穿过空腔,在第二位置,内部部件的上部坐置抵靠座壁,以防止熔融源材料流动穿过空腔。
16.根据实施例的另一个方面,公开了一种用于控制来自euv源中的腔室的熔融源材料的流动的装置,该装置包括阀体,该阀体在被竖直布置时限定竖直腔室,该阀体具有适于连接到流体供给管线的上阀体端和适于与腔室流体连通的下阀体端,该空腔具有位于空腔上端的座壁和内部部件,该内部部件布置在空腔中并且适于被通过下阀体端进入空腔的熔融源材料从第一位置竖直移动到第二位置,在第一位置,内部部件准许流体流动穿过空腔,在第二位置,内部部件的上部朝向座壁移动并且抵靠座壁密封接触,以防止熔融源材料流动穿过空腔。
17.根据实施例的另一个方面,公开了一种用于控制来自euv源中的腔室的熔融源材料的流动的装置,该装置包括限定腔室的阀体,该阀体具有适于被连接到流体供给管线的第一阀体端和适于被放置为与腔室流体连通的第二阀体端,该腔室在更靠近阀体端的端部处具有座壁;以及布置在空腔中的内部部件,该装置适于具有第一状态和第二状态,在第一状态中,内部部件准许流体流动穿过空腔,在第二状态中,空腔部分填充有熔融源材料并且在第二状态中,由于空腔中的熔融源材料,内部部件阻止熔融源材料流动穿过空腔。
18.根据实施例的另一个方面,公开了一种用于控制euv源中的第一源材料保持腔室和第二源材料保持腔室之间的熔融源材料的流动的装置,该装置包括限定空腔的阀体,该阀体具有适于与所连接的第一源材料保持腔室流体连通的第一阀体端和适于与第二源材料保持腔室流体连通的第二阀体端,该空腔在靠近第一阀体端的端部具有座壁,以及布置在空腔中的内部部件,该内部部件适于从第一位置移动到第二位置,在第一位置,内部部件
准许源材料通过空腔从第一源材料保持腔室流到第二源材料保持腔室,在第二位置,内部部件的上部抵靠座壁坐置,以防止熔融源材料通过空腔从第二源材料保持腔室流到第一源材料保持腔室。
19.根据实施例的另外的方面,内部部件可以包括大体上圆柱形的本体和围绕大体上圆柱形的本体的下周边布置的多个翼型构件。多个翼型构件可以包括至少三个翼型构件,该至少三个翼型构件被布置为以旋转对称的模式围绕大体上圆柱形的本体的下周边,例如,多个翼型构件可以包括六个翼型构件,该六个翼型构件被布置为以60度的间隔围绕大体上圆柱形的本体的下周边。翼型构件的外面可以是倒圆的。
20.根据实施例的另外的方面,内部部件可以是固体并且包括具有小于熔融源材料密度的密度的材料。如果熔融源材料是熔融锡,则内部部件可以包括例如钛或钛合金。内部部件可以具有半径为r的球形上表面并且座壁可以具有半径为r的互补球形表面。内部部件可以具有锥形下部。该装置还可以包括加热器,该加热器与阀体热接触并且适于将阀体和内部部件的温度保持在源材料的熔点以上。阀体可以包括钼。
21.下面参考附图详细描述本公开主题的其他实施例、特征和优点,以及各种实施例的结构和操作。
附图说明
22.图1示出了根据实施例的一个方面的用于激光产生等离子体euv光源系统的总体广义概念的示意性非比例视图。
23.图2是可以用在诸如图1中示出的euv光源中的液滴分配器的平面图。
24.图3是具有多个源材料腔室的源材料供应系统的概念图。
25.图4a是根据实施例的一个方面的用于源材料阀的内部部件的平面图。
26.图4b是图4a的内部部件的仰视图。
27.图5是根据实施例的一个方面的用于源材料阀的内部部件的替代配置的平面图。
28.图6是根据实施例的一个方面的处于第一状态的源材料阀的横截面视图。
29.图7是处于第二状态的图6的源材料阀的横截面视图。
30.图8是根据实施例的一个方面的其中源材料阀建立单向流动的多腔室系统的示意图。
31.下面结合附图详细描述本发明的其他特征和优点,以及本发明各种实施例的结构和操作。应注意的是,本发明不限于本文描述的特定实施例。本文呈现的此类实施例仅用于说明目的。基于本文包括的教导,其他实施例对于相关领域的技术人员来说将是显而易见的。
具体实施方式
32.现在参考附图描述各种实施例,其中相同的附图标记始终用于指代相同的元件。在以下的描述中,出于解释的目的,阐述了许多具体细节,以便促进对一个或多个实施例的彻底理解。然而,在一些或所有情况下,显而易见的是,下述任何实施例都可以在不采用下面描述的具体设计细节的情况下实践。
33.首先参考图1,示出了根据本发明实施例的一个方面的示例性euv光源(例如激光
产生等离子体euv光源20)的示意图。如图中示出的,euv光源20可以包括脉冲或连续激光源22,该脉冲或连续激光源可以例如是产生10.6μm或其他合适波长的辐射的脉冲流体放电co2激光源。脉冲流体放电co2激光源可以具有以高功率和高脉冲重复率操作的dc或rf激发。
34.euv光源20还包括源递送系统24,用于以液滴或连续液流的形式递送源材料。源材料可以由锡或锡化合物制成,但也可以使用其他材料。源递送系统24将源材料引入腔室26的内部,到达辐射区域28,在辐射区域处源材料可以被辐射以产生等离子体。在一些情况下,电荷被置于源材料上以准许源材料被朝向或远离照射区域28引导。应注意的是,如本文所使用的,照射区域是可以发生源材料照射的区域并且是即使在实际上没有发生照射的时候也是照射区域。
35.继续图1,光源20还可以包括一个或多个光学元件,诸如收集器30。收集器30可以是法向入射反射器,例如,实现为多层反射镜或“mlm”,也就是说,涂覆有mo/si多层的sic衬底,在每个接口处沉积有另外的薄阻挡层,以有效地阻挡热诱导的层间扩散。也可以使用其他衬底材料,诸如铝或硅。收集器30可以是长椭圆形的形式,具有允许激光穿过并且到达照射区域28的孔。收集器30可以是例如具有在照射区域28的第一焦点和在所谓的中间点40(也称为中间焦点)的第二焦点的椭圆体的形状,其中euv光可以从euv光源20输出并且输入到例如集成电路光刻工具50,集成电路光刻工具50使用该光例如以已知方式处理硅晶片工件52。硅晶片工件52然后以已知的方式被另外的处理以获得集成电路设备。
36.euv光源20还可以包括euv光源控制器系统60,该euv光源控制器系统还可以包括激光发射控制系统65连同例如激光束定位系统(未示出)。euv光源20还可以包括源位置检测系统,该源位置检测系统可以包括一个或多个液滴成像器70,该一个或多个液滴成像器生成指示源液滴的绝对或相对位置的输出(例如相对于照射区域28的绝对或相对位置)并且将此输出提供给源位置检测反馈系统62。源位置检测反馈系统62可以使用此输出来计算源位置和轨迹,由此可以计算源误差。然后,源误差可以作为输入提供给光源控制器60。作为响应,光源控制器60可以生成控制信号(诸如激光位置、方向或定时校正信号)并且将此控制信号提供给激光束定位控制器(未示出)。激光束定位系统可以使用控制信号来控制激光定时电路和/或控制激光束位置和成形系统(未示出),例如,来改变激光束焦点在腔室26内的位置和/或聚焦功率。
37.如图1中所示,光源20可以包括源递送控制系统90。源递送控制系统90可响应于信号(例如,上面所描述的源误差,或从系统控制器60提供的源误差导出的某个量)进行操作,以校正辐射区域28内的源液滴的位置误差。这可以例如通过重新定位源递送机构92释放源液滴的点来实现。源递送机构92延伸到腔室26中并且也从外部供应源材料和流体源,以在压力下将源材料放置在源递送机构92中。
38.图2更详细地示出了用于将源材料递送到腔室26中的源递送机构92。对于图2中示出的一般化实施例,源递送机构92可以包括保持熔融源材料(诸如锡)存储器94。加热元件(未示出)可控地将源递送机构92或其选择部段保持在源材料熔化温度以上的温度。熔融源材料95可以通过使用通过供给管线96引入的惰性流体(诸如氩气)而被置于压力下。压力迫使源材料95通过供应导管98,该供应导管将熔融源材料输送到阀100和喷嘴102。供应导管98被加热并且可以包括一个或多个过滤器。常规上,如上所述,此供应导管98可以由钽钨合
金制成并且通过可以由钼制成的压缩配件与系统中的其他部件连接以保持液密密封。供应导管线路98优选地是柔性的,以准许存储器94和喷嘴102的相对运动。
39.阀100可以是热阀。可以采用热电设备(诸如珀耳帖设备)来构建阀100:冻结存储器94与喷嘴102之间的源材料以关闭阀100并且加热固化的源材料以打开阀100。图2还示出了,源递送机构92耦合到可移动部件104,使得可移动部件104的移动改变了液滴从喷嘴102释放的点的位置。可移动构件104的移动由液滴释放点定位系统控制。
40.对于源递送机构92,可以使用一个或多个调制或非调制源材料分配器。例如,可以使用具有形成有孔口的毛细管的调制分配器。喷嘴102可以包括一个或多个电致动元件(例如由压电材料制成的致动器),该一个或多个电致动元件可以选择性地膨胀或收缩以使毛细管变形并且调节源材料从喷嘴102的释放。
41.对于一些应用来说,提供一种在线液滴生成器再填充系统和程序是潜在有利的,该系统和程序不需要关闭系统以便再填充储器并且然后使系统重新在线。因此,此在线再填充系统能够在不停止生成液滴的情况下再填充锡,大大提高了整个系统的可用性。此类系统可以使用多个源材料腔室,例如主储器、再填充储器、再填充罐和灌注罐。在2014年8月26日授权的标题为“filter for material supply apparatus(用于材料供应装置的过滤器)”的美国专利第8,816,305号中公开了包括储器和容器的两腔室系统的示例,其全部公开内容通过引用并入本文。通过向腔室施加不同的压力来驱动这些储器之间的锡转移。熔融锡对压差反应强烈。1psi的压力差会导致100mm的锡高度差。通常来说,液滴生成器在约4000psi的压力下操作。在这里和其他地方,术语“流体”以其常规含义使用,既指气体和液体两者。
42.在液滴生成器操作时进行锡再填充时,几种故障中的任一种都可能使熔融锡进入流体入口管线。例如,压力控制故障、数据通信错误或压力控制器的错误校准或漂移都可能导致液体管线被液态锡淹没。因为在流体管线中不存在加热机构,所以液态锡会凝固并且严重堵塞流体管线。解决此问题可能需要延长停机时间,甚至需要更换模块。
43.尝试减少锡堵塞流体供给管线的可能性的一种方法涉及使用联锁设备来保护流体管线。然而,这些互锁会大大增加系统的复杂性。它们还会导致在线再填充系统意外减压。它们也不能完全防止由于例如压力传感器漂移或软件错误,或简单的通信错误或延迟而造成的流体管线污染。
44.根据实施例的一个方面,通过在源材料路径和流体管线之间插入源材料阀,提供了一种用于防止源材料进入流体供给管线的更可靠和更坚固的系统。此类措施原则上基本上是防错的,并且对于由错误(诸如软件/硬件故障、网络通信错误、断电、传感器漂移等)导致的所有故障都是稳健的。此类系统还简化了机器和材料损坏控制设计,从而提高了整个系统的可用性和稳健性。
45.图3是此类系统的概念图。图3示出了用于保存熔融源材料的两个腔室,主存储器300和再填充存储器310。主存储器300包括液体源材料305并且再填充存储器310包括液体源材料315。用来自流体供给管线307的流体对主存储器300加压。再填充存储器310被来自流体供给管线317的流体加压。流体可以是任何合适的惰性流体,诸如氩气。通常来说,主存储器300和再填充存储器310被加压到约4000psi的压力。
46.在典型的常规系统中,不存在任何东西阻止腔室中的源材料上升、填充腔室,并且
到达流体供给管线,从而导致上述所有问题。根据实施例的一个方面,液体源材料阀用于防止源材料进入流体填充管线。特别地,源材料阀320被放置在腔室300和流体供给管线307之间。源材料阀320与腔室300流体连通。本文中的流体连通意味着在源材料阀320和腔室300之间存在流体可以流动的路径。从概念上讲,这可以等效地视为将源材料阀320放置在流体管线307中。此外,源材料阀330放置在腔室310和流体供给管线317之间。只要不存在进入的源材料流,即使有压力差,每个源材料阀也允许流体在两个方向上自由流动。然而,如果源材料305上升并且进入源材料阀320,那么源材料阀320将关闭。类似地,如果源材料315上升并且进入源材料阀330,那么源材料阀330将关闭。
47.根据实施例的一个方面,源材料阀包括限定内部空腔的阀体和内部部件,该内部部件占据空腔内的正常操作位置,在该正常操作位置,流体流动穿过阀(第一状态),但是该内部部件可以被进入空腔的源材料移动到第二位置,在该第二位置,进入空腔的流体管线被密封(第二状态)。特别地,参考图4a,示出了设计成如下所述在空腔内移动的内部部件400。内部部件400具有主体405,该主体具有间隙417,该间隙准许流体通过内部部件。主体405可以是大体上圆柱形的,翼410围绕主体405的下周边布置,以建立间隙并且有助于稳定内部部件400在空腔内的位置。备选地,翼410被称为翅片或间隔元件,后者是因为它们有助于保持主体405和源材料阀中的空腔壁之间的间隔,内部部件400定位在该源材料阀中。一般来说,优选地存在至少三个翼型构件410,它们被布置为以旋转对称的模式围绕大体上圆柱形的本体405的下周边(也就是说,关于大体上圆柱形的本体405的旋转轴线对称)。在示出的布置中,存在六个翼410,它们围绕大体上圆柱形的本体405的下周边间隔60度布置,但是本领域普通技术人员将容易理解,可以使用不同数量的翼并且翼可以以不同的模式布置。翼410的外面415可以在所有方向上设有圆形边缘,以防止堵塞。图4b是示出了翼410的取向的图4a的内部部件400的仰视图。图5示出了具有另一个可能配置的内部部件450,其中部件主体455的底部是锥形的以便于流体通过内部部件。翼410的形状和间隔使得它们之间具有空间或空隙,只要不存在进入的源材料流,便允许流体自由地流动穿过圆柱体405并且穿过翼410之间的空隙。
48.图6是根据实施例的一个方面的源材料阀320的横截面视图。源材料阀320包括在其内限定空腔510的阀体500。内部部件400定位在空腔510内。在图6中示出的位置,内部部件400放置在空腔510的底部上。当不存在源材料浪涌时,这将是正常的操作位置或第一状态,在源材料浪涌中,流体通过空腔510从流体供给管线307流入,并且然后通过空腔510的底部流出。图6中还示出了加热器530,该加热器与阀体500热接触并且将源材料阀320加热到源材料熔点以上的温度。
49.对于一些实施例,空腔510具有基本上一致的宽度并且内部部件主体405具有小于空腔宽度的宽度以在空腔壁和内部部件之间建立流体可以流动穿过的间隙。该间隙由适于保持主体405与空腔510的壁横向间隔开的用作间隔元件的翼410保持。如上所描述的,间隔元件可以包括从主体405沿着相反方向横向延伸的至少一对突起,突起具有横向宽度,使得突起的宽度与主体宽度一起刚好略小于空腔宽度。在一些实施例中,空腔510是具有第一直径的圆柱形并且主体405是具有小于第一直径的第二直径的圆柱形。间隔元件,即翼410可以是从主体径向延伸的翼型构件。
50.图7是图6的源材料阀320在第二状态下的横截面视图,在该第二状态下当由于压
力变化而存在锡流涌动时内部部件400已经被熔融源材料540推动到空腔510的顶部。在此位置,锡540被阻止进一步移动到空腔510中并且移出到附接到源材料阀320顶部的流体供给管线307中。内部部件400的顶部和空腔510的顶部接触以密封该表面,因此没有源材料可以穿过到达流体管线307。
51.再次参考图6,内部部件400包括主体,该主体被配置为将其自身抵靠在空腔510的顶部以密封空腔510的顶部。内部部件400还具有翼或翅片410,该翼或翅片将内部部件400保持在正确的方向并且准许流体流动穿过内部部件400。
52.根据实施例的一个方面,在使用中,源材料阀320被定向为竖直的并且内部部件400优选地被配置为相对于熔融源材料有浮力。这可以通过使内部部件400具有内部空间或通过使内部部件为固体并且由比熔融源材料轻的材料制成来实现。内部部件400也优选由在液体源材料存在的情况下化学和热稳定的材料制成,并且在例如4000psi的主要压力下具有机械强度。在源材料是锡的示例中,内部部件400的主体405可以由诸如钛或钛合金(诸如ti-mn或ti-v)制成,但是在其他实施例中可以使用其他合适的材料。用于翼410的材料应具有与主体405相同的抵抗液态锡环境的化学和机械稳定性并且在一些实施例中可以由与主体405相同的材料形成。因为翼410构成翼410和主体405的组合体积的较小部分,翼410可以由具有足够强度的较重材料(诸如钛、钼、钨及其合金)制成但是在其他实施例中可以使用其他合适的材料。阀体500的空腔510的内表面优选由在存在液体源材料的情况下化学和热稳定的材料制成,诸如如果源材料是锡,则由钼制成,但是在其他实施例中可以使用其他合适的材料。
53.根据实施例的另一个方面,内部部件400的顶面是具有半径r的球体表面的一部分。这在本文被称为“球形”表面。空腔510的上壁具有半径为r的互补球面。以此方式匹配这两个配合表面的曲率允许形成良好的密封,即使当内部部件400不是完全竖直时。
54.根据实施例的另一个方面,内部部件400的主要部分的直径,在图6中指定为d2,被制成大于空腔510顶部处的孔的直径d4。即使内部部件400不是完全竖直的,这也能够形成良好的密封。
55.根据实施例的另一个方面,相对的翼410的外侧边缘之间的宽度,即在图6中指定为d1的“翼展”,被设置为略小于在图6中指定为d3的空腔510的直径。选择翼410的竖直范围,以防止内部部件400翻转并且卡在空腔510中。d1可以被视为内部部件400的最大外径,其包括由翼410形成的最外面部分之间的间隙417。
56.作为尺寸的一些非限制性示例,d4可以制成等于0.25英寸的典型流体管线内径。d3可以做成约是d4的两倍,即0.5英寸。d2可以是(√3)/4英寸以使流体通道横截面沿着空腔510的长度一致。d1优选略小于d3,例如比d3短0.04英寸。r可以在10英寸到40英寸的范围内。指定为h2的内部部件400的高度一般可以在1至2英寸的范围内。h1和h2之间的高度差优选小于0.5英寸,并且更优选小于0.25英寸。这些仅是尺寸的示例,并且对于本领域普通技术人员来说,显然可以使用其他尺寸。
57.如上所述,在多腔室系统中,可能需要熔融源材料从第一腔室单向流动到第二腔室,不准许从第二腔室流回第一腔室。例如,当第一腔室包括净化的熔融源材料,而第二腔室包括污染的或纯度较低的熔融源材料时,可能就是此情况。在此类布置中,源材料阀也可以有利地使用。例如,在图8中,第一储器800包括基本上纯的源材料805。第二储器810包括
纯度较低的源材料815。可能存在期望准许从第一腔室800到第二腔室810的流动但不准许反向流动的情况。为了适应这些情况,可以在两个腔室之间插入源材料阀820。源材料805将具有与源材料815基本上相同的密度,因此源材料阀820中的内部部件825将趋向于中性浮力。然而,在故障导致腔室810中的压力高于腔室800中的压力的情况下,如图6和图7中的内部部件400那样成形的内部部件825将在从腔室810到腔室800的方向上呈现更大的流动阻力并且将趋向于移动到抵靠腔室830的顶部,从而阻挡流动。
58.尽管以上描述是关于在用于在euv源中供应源材料的设备中使用新颖的源材料阀,但是本领域普通技术人员将容易理解,本文公开的原理也可以有利地应用于需要防止熔融材料流动的其他应用中。
59.以上描述包括多个实施例的示例。当然,不可能为了描述上述实施例而描述部件或方法的每一种可能的组合,但是本领域普通技术人员可以认识到,各种实施例的许多进一步的组合和置换是可能的。因此,所描述的实施例旨在涵盖所有这些落入所附权利要求的精神和范围内的变更、修改和变化。此外,就详细描述或权利要求中采用的术语“包括”而言,该术语旨在以类似于术语“包括”如“包括”在用作权利要求中的过渡词时被解释的方式来包括。此外,尽管所描述的方面和/或实施例的元件可以以单数形式描述或要求保护,但除非明确声明限制为单数形式,否则复数形式也被设想在内。另外,任何方面和/或实施例的全部或一部分可以与任何其他方面和/或实施例的全部或一部分一起使用,除非另有说明。
60.本发明的其他方面在以下编号的条款中阐述。
61.1.一种用于控制来自在euv源中的源材料保持腔室的熔融源材料的流动的装置,该装置包括:
62.阀体,限定空腔,该阀体具有适于被连接到流体供给管线的第一阀体端和适于与源材料保持腔室流体连通的第二阀体端,该空腔在更靠近第一阀体端的端部处具有座壁;以及
63.内部部件,被布置在空腔中并且适于从第一位置移动到第二位置,在第一位置,内部部件准许流体流动穿过空腔,在第二位置,内部部件的上部坐置抵靠座壁,以防止熔融源材料流动穿过空腔。
64.2.根据条款1所述的装置,其中该空腔具有基本上均匀的空腔宽度,并且其中该内部部件包括具有小于空腔宽度的主体宽度的主体,以及适于使主体保持与空腔的侧壁横向间隔开的多个间隔元件。
65.3.根据条款2所述的装置,其中间隔元件包括从主体沿着相反方向横向延伸的至少一对突起,该突起具有横向宽度,使得突起的宽度与主体宽度一起小于空腔宽度。
66.4.根据条款2所述的装置,其中空腔是具有第一直径的圆柱形并且主体是具有小于第一直径的第二直径的圆柱形。
67.5.根据条款4所述的装置,其中间隔元件是从主体径向延伸的翼型构件。
68.6.根据条款1所述的装置,其中内部部件包括大体上圆柱形的主体和多个翼型构件,多个翼型构件从主体径向向外延伸并且围绕大体上圆柱形的本体的下周边布置的。
69.7.根据条款6所述的装置,其中该多个翼型构件包括至少三个翼型构件,该至少三个翼型构件被布置为以旋转对称的模式围绕大体上圆柱形的本体的下周边。
70.8.根据条款7所述的装置,其中该多个翼型构件包括六个翼型构件,该六个翼型构件被布置为以60度的间隔围绕大体上圆柱形的本体的下周边。
71.9.根据条款6所述的装置,其中翼型构件中的每个的外面是圆形的。
72.10.根据条款1所述的装置,其中内部部件是固体并且包括具有的密度小于熔融源材料密度的材料。
73.11.根据条款2所述的装置,其中主体是固体并且包括具有小于熔融源材料密度的密度的材料。
74.12.根据条款2所述的装置,其中内部部件包括钛或钛合金。
75.13.根据条款2所述的装置,其中间隔元件中的每个包括钛、钼、钨或它们的合金。
76.14.根据条款1所述的装置,其中内部部件具有半径为r的球形上表面并且其中座壁具有半径为r的互补球形表面。
77.15.根据条款1所述的装置,其中内部部件具有锥形下部。
78.16.根据条款1所述的装置,其还包括加热器,该加热器与该阀体热接触并且适于将该阀体和内部部件的温度保持在该源材料的熔点以上。
79.17.根据条款1所述的装置,其中空腔的内表面包括钼。
80.18.一种用于控制来自在euv源中的腔室的熔融源材料的流动的装置,该装置包括:
81.阀体,其在竖直布置时限定竖直空腔,该阀体具有适于连接到流体供给管线的上阀体端和适于与腔室流体连通的下阀体端,该空腔在空腔的上端具有座壁;以及
82.内部部件,其布置在该空腔中并且适于被通过该下阀体端进入该空腔的熔融源材料从第一位置竖直移动到第二位置,在该第一位置,该内部部件准许流体流动穿过该空腔,在该第二位置,该内部部件的上部朝向该座壁移动并且抵靠该座壁密封接触,以防止熔融源材料流动穿过该空腔。
83.19.根据条款18所述的装置,其中内部部件包括大体上圆柱形的主体和多个翼型构件,多个翼型构件从大体上圆柱形的主体径向向外延伸并且被布置为围绕大体上圆柱形的主体的下周边。
84.20.根据条款19所述的装置,其中该多个翼型构件包括至少三个翼型构件,该至少三个翼型构件被布置为以旋转对称的模式围绕该大体上圆柱形的本体的下周边。
85.21.根据条款20所述的装置,其中该多个翼型构件包括六个翼型构件,该六个翼型构件被布置为以60度的间隔围绕大体上圆柱形的本体的下周边。
86.22.根据条款20所述的装置,其中翼型构件中的每个的外面是倒圆的。
87.23.根据条款18所述的装置,其中内部部件是固体并且包括具有小于熔融源材料密度的密度的材料。
88.24.根据条款18所述的装置,其中内部部件包括钛或钛合金。
89.25.根据条款18所述的装置,其中内部部件具有半径为r的球形上表面并且其中座壁具有半径为r的互补球形表面。
90.26.根据条款18所述的装置,其还包括加热器,该加热器与阀体热接触并且适于将阀体和内部部件的温度保持在源材料的熔点以上。
91.27.一种用于控制来自在euv源中的腔室的熔融源材料的流动的装置,该装置包
括:
92.阀体,限定空腔,该阀体具有适于被连接到流体供给管线的第一阀体端和适于被放置为与腔室流体连通的第二阀体端,该空腔在更靠近阀体端的端部处具有座壁;以及
93.内部部件,被布置在空腔中,
94.该装置适于具有第一状态和第二状态,在第一状态中,内部部件准许流体流动穿过空腔,在第二状态中,空腔至少部分填充有熔融源材料并且在第二状态中,由于空腔中的熔融源材料,内部部件阻止熔融源材料流动穿过空腔。
95.28.一种用于控制熔融源材料在euv源中的第一源材料保持腔室和第二源材料保持腔室之间的流动的装置,该装置包括:
96.限定空腔的阀体,该阀体具有适于与所连接的第一源材料保持腔室流体连通的第一阀体端和适于与第二源材料保持腔室流体连通的第二阀体端,该空腔在更靠近第一阀体端的端部具有座壁;以及
97.内部部件,被布置在空腔中,并适于在第一位置和第二位置之间移动,在第一位置,内部部件允许源材料通过空腔从第一源材料保持腔室流到第二源材料保持腔室,在第二位置,内部部件的上部抵靠座壁坐置,以防止熔融的源材料通过空腔从第二源材料保持腔室流到第一源材料保持腔室。
98.29.根据条款28所述的装置,其中内部部件包括大体上圆柱形的本体和多个翼型构件,多个翼型构件被布置为围绕大体上圆柱形的本体的下周边。
99.30.根据条款29所述的装置,其中该多个翼型构件包括至少三个翼型构件,该至少三个翼型构件被布置为以旋转对称的模式围绕该大体上圆柱形的本体的下周边。
100.31.根据条款30所述的装置,其中该多个翼型构件包括六个翼型构件,该六个翼型构件被布置为以60度的间隔围绕大体上圆柱形的本体的下周边。
101.32.根据条款29所述的装置,其中翼型构件中的每个的外面是倒圆的。
102.33.根据条款28所述的装置,其中内部部件包括钛或钛合金。
103.34.根据条款28所述的装置,其中内部部件具有半径为r的球形上表面并且其中座壁具有半径为r的互补球形表面。
104.35.根据条款28所述的装置,其还包括加热器,该加热器与阀体热接触并且适于将阀体和内部部件的温度保持在源材料的熔点以上。
105.36.根据条款28所述的装置,其中该空腔的内表面包括钼。
106.上述实现方式和其他实现方式在所附权利要求的范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1