一种摩擦起电磁性液体阻尼减振器

文档序号:29945113发布日期:2022-05-07 15:52阅读:152来源:国知局
一种摩擦起电磁性液体阻尼减振器

1.本发明涉及机械工程振动控制领域,尤其是涉及一种摩擦起电磁性液体阻尼减振器。


背景技术:

2.磁性液体作为一种新型纳米功能材料,是在纳米尺度的磁性颗粒表面包覆表面活性剂后,将其分散在基载液中形成的稳定胶体溶液。由于其独特的组成和结构,磁性液体兼具流动性与磁性,可以应用在减振器、传感器、密封等多个领域。磁性液体阻尼减振器是基于磁性液体二阶浮力原理工作的,它具有寿命长、无需外界供能、结构简单、体积小、质量轻、可靠性高等优点,适用于航天器中较长部件(如卫星天线、太阳能帆板)的低频、小幅、小加速度的局部减振。
3.现有的磁性液体阻尼减振器中的工作单元悬浮稳定性差,阻尼减振效率低,无法把振动的机械能转化为可利用的能量。


技术实现要素:

4.本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明的一个目的在于提出一种摩擦起电磁性液体阻尼减振器,所述摩擦起电磁性液体阻尼减振器阻尼减振效果优异,可将振动机械能转化为可利用的电能。
5.根据本发明实施例的摩擦起电磁性液体阻尼减振器,所述摩擦起电磁性液体阻尼减振器包括:外壳、摩擦部、工作单元、磁性液体、导电部及用电单元。所述摩擦部设置在所述外壳的两端,所述摩擦部包括上摩擦部与下摩擦部,所述上摩擦部与所述下摩擦部的材质不同,所述上摩擦部与所述下摩擦部及所述外壳形成减振腔;所述工作单元设置在所述减振腔中,所述工作单元包括永磁体及用于连接所述永磁体与所述外壳内壁的弹力绳;所述磁性液体设置在所述工作单元与所述摩擦部之间;所述导电部包括导线,所述导线与所述摩擦部连接;所述用电单元通过所述导线与所述上摩擦部及所述下摩擦部连接,构成闭合回路。
6.在所述摩擦起电磁性液体阻尼减振器受到外界振动影响时,所述工作单元在所述减振腔内产生位移,在所述弹力绳的作用下,所述工作单元做往复运动,所述磁性液体同时与所述上摩擦部及所述下摩擦部产生摩擦,根据摩擦起电效应,此时所述上摩擦部与所述下摩擦部中产生电性相反的电荷,且所述上摩擦部、所述下摩擦部、所述电极层、所述导线及所述用电单元相连接构成了闭合回路,电荷在闭合回路中移动最终形成电流,电流经过所述用电单元,被所述用电单元存储或利用。这样就实现了将振动机械能转化为可利用的电能,同时加快了对振动机械能的转化消耗,提高了所述摩擦起电磁性液体阻尼减振器的阻尼减振效率,也拓展了所述摩擦起电磁性液体阻尼减振器的实用性。
7.进一步地,所述上摩擦部朝向所述工作单元的侧面、所述下摩擦部朝向所述工作单元的侧面均形成有表面织构。
8.进一步地,所述上摩擦部与所述下摩擦部均由高分子材料构成。
9.进一步地,所述上摩擦部及所述下摩擦部的厚度均为200um~500um。
10.进一步地,所述永磁体为海尔贝克阵列永磁体。
11.进一步地,所述弹力绳包括第一弹力绳、第二弹力绳,所述第一弹力绳与所述第二弹力绳对称设置在所述永磁体的两侧;所述第一弹力绳的两端分别与所述永磁体及所述外壳内壁固定连接,所述第二弹力绳的两端分别与所述永磁体及所述外壳内壁固定连接。
12.进一步地,所述导电部还包括与所述导线连接的电极层,所述电极层分别设置在所述上摩擦部远离所述工作单元的侧面和所述下摩擦部远离所述工作单元的侧面。
13.进一步地,所述外壳包括主体及固定在所述主体两端的端盖,固定在所述主体两端的所述端盖均设置在所述电极层远离所述摩擦部的外表面。
14.进一步地,所述外壳采用电绝缘材质。
15.进一步地,摩擦起电磁性液体阻尼减振器还包括固定件,所述固定件用于使所述主体及端盖固定连接。
16.本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
17.本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
18.图1是根据本发明实施例的摩擦起电磁性液体阻尼减振器的剖面结构示意图;
19.图2是根据本发明实施例的外壳的结构示意图;
20.图3是图1中沿ⅱ—ⅱ的剖视图;
21.图4是根据本发明实施例的摩擦部的矩形表面织构结构示意图;
22.图5是根据本发明实施例的摩擦部的多边形表面织构结构示意图;
23.图6是根据本发明实施例的摩擦部的圆形表面织构结构示意图;
24.图7是根据本发明实施例的摩擦部的三角形表面织构结构示意图。
25.附图标记:
26.摩擦起电磁性液体阻尼减振器100,
27.外壳10,主体11,端盖12,开口13,减振腔14,
28.摩擦部20,上摩擦部21,下摩擦部22,
29.工作单元30,永磁体31,弹力绳32,第一弹力绳321,第二弹力绳322,
30.磁性液体40,
31.导电部50,导线51,电极层52,
32.用电单元60,
33.固定件70。
具体实施方式
34.下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附
图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
35.在本发明的描述中,需要理解的是,术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
36.在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
37.下面请参考图1~图7,根据本发明实施例提供的摩擦起电磁性液体阻尼减振器100,所述摩擦起电磁性液体阻尼减振器100包括:外壳10、摩擦部20、工作单元30、磁性液体40、导电部50及用电单元60。
38.外壳10内形成有容纳腔,摩擦部20、工作单元30及磁性液体40均位于容纳腔内。外壳10采用电绝缘且不导磁材料,这样可以避免外壳10影响到减振腔14中工作单元30的正常运动,并且外壳10可以隔绝电流的传导,防止漏电。
39.摩擦部20设置在外壳10内,摩擦部20包括上摩擦部21和下摩擦部22,上摩擦部21、下摩擦部22与外壳10共同限定出减振腔14,例如图1所示,上摩擦部21邻近外壳10的上壁面,下摩擦部22邻近外壳10的下壁面,而上摩擦部21和下摩擦部22均完全占据外壳10的上壁面和下壁面,由此,上摩擦部21、下摩擦部22和外壳10的侧壁面构造出减振腔14。
40.进一步地,上摩擦部21与下摩擦部22采用不同的材料,这样在受到摩擦后,上摩擦部21与下摩擦部22所带的电荷相反。摩擦部20采用高分子材料,如pet和kapton等,高分子材料在摩擦后更容易产生电荷,且摩擦部20的厚度在200um~500um之间,这样既能保证摩擦部20受到磁性液体40摩擦后正常产生电荷,且产生的电荷能正常传到导电部50,同时摩擦部20不会占用太大的空间,布局合理。
41.进一步地,在上摩擦部21朝向工作单元30的侧面形成有表面织构,下摩擦部22朝向工作单元30的侧面形成有表面织构,如图4~图7所示,表面织构可以具有多种样式,例如表面织构可以为平行槽、螺纹槽、圆形织构、椭圆形织构、三角形织构、多边形织构中的至少一种,当然,表面织构还可以是其他的结构形式,这里不作限制。
42.磁性液体40分别位于永磁体31朝向上摩擦部21和下摩擦部22的侧面,表面织构可增大上摩擦部21或者下摩擦部22与磁性液体40的接触面积,改变磁性液体40的剪切速率,增大固液间摩擦,在提高装置的减振性能的同时提高装置摩擦起电的效率。
43.工作单元30设置在上摩擦部21与下摩擦部22之间,工作单元30为由多个永磁块组合而成的复合磁体,永磁块采用永磁材料,如钕铁硼等。相对于单个磁体结构,多个永磁块连接组合的复合结构,产生的磁场梯度更大,会使工作单元30所受的磁性液体40悬浮力增大,从而提高工作单元30的悬浮稳定性,进而提高减振性能,延长使用寿命。需要说明的是,
虽然采用多个永磁块的复合结构比单个磁体结构产生的磁场梯度更大,提高了摩擦起电磁性液体阻尼减振器100的稳定性,但考虑到体积、质量等条件的限制,永磁块的个数也不宜过多,一般情况下,根据减振需要工作单元30会选用2~6个永磁块组合成复合结构。进一步地,可以将工作单元30中的永磁块排列为海尔贝克阵列,这样可以用最少量的磁体产生最强的磁场,进一步提高摩擦起电磁性液体阻尼减振器100的稳定性。
44.工作单元30与摩擦部20之间存在间隙,间隙的宽度为1~3毫米,这样可以保证工作单元30与摩擦部20产生相对运动,同时,间隙中填充有磁性液体40,一般选用机油基、酯基磁性液体40,并且磁性液体40吸附在永磁体31的表面。在工作单元30与摩擦部20产生相对运动时,磁性液体40与摩擦部20之间产生摩擦。
45.虽然基于磁性液体二阶浮力原理,磁性液体40可以将浸在其中的比重比自身大的工作单元30悬浮起来,静止悬浮时,工作单元30基本处于液体中央,当接收到外界振动能时,将引起工作单元30任意性的波动,最终工作单元30因磁性液体40的不对称性引起的压力差以回复运动的形式回到平衡位置,即回到液体中央,但由于工作单元30由多个永磁块组合而成质量较大,若只有磁性液体40提供的作用力,工作单元30难以完成往复运动,因此在工作单元30两端设置了为工作单元30提供回复力的弹力绳32。弹力绳32的一端固定在外壳10的内壁上,弹力绳32的另一端与永磁体31固定连接。工作单元30受振动影响产生位移带动弹力绳32导致弹力绳32形变,此时,弹力绳32具有弹性势能,可以为工作单元30的往复运动提供回复力。弹力绳32一般选用非导磁且弹性变形能力好的材料,如弹簧钢等,并且弹力绳32包括第一弹力绳321和第二弹力绳322,第一弹力绳321和第二弹力绳322对称设置在永磁体31的两端,也即,第一弹力绳321的两端分别与永磁体31及所述外壳10的内壁固定连接,第二弹力绳322的两端分别与永磁体31及所述外壳10的内壁固定连接,另外,第一弹力绳321和第二弹力绳322还可在同一水平面内,这样保证了工作单元30可以平稳地进行往复运动。
46.导电部50包括导线51、电极层52。电极层52设在上摩擦部21或者下摩擦部22远离工作单元30的外表面,电极层52与摩擦部20相连接,导线51则连接电极层52与用电单元60,也即,用电单元60串联在上摩擦部21和下摩擦部22之间,这样上摩擦部21、下摩擦部22、电极层52、导线51及用电单元60构成了闭合回路。电极层52一般采用导电性较好的材料如铜等。
47.用电单元60可以为电容、二极管等电子元器件,能够存储或利用闭合回路中的电能。
48.如图1、图2所示,本发明施例提供的摩擦起电磁性液体阻尼减振器100,外壳10还包括主体11和端盖12。在主体11的两端设有开口13,端盖12固定在开口13上,且覆盖开口13。主体11与端盖12通过固定件70固定,并且主体11与端盖12可拆解。固定件70为固定螺栓,方便安装和拆卸。
49.在组装时,先将主体11与端盖12拆解开,这样便于将摩擦部20、工作单元30等组装到外壳10中。组装过程中,摩擦部20设置在开口13上并完全覆盖开口13,摩擦部20的面正对开口13的端面,这样摩擦部20与主体11共同构成减振腔14,工作单元30设置在减振腔14中,并通过弹力绳32与主体11内周壁连接;端盖12设置在摩擦部20远离工作单元30的一侧,在端盖12与摩擦部20之间还设有电极层52。端盖12通过固定件70与主体11固定连接,用以保
护并固定摩擦部20及电极层52,保证摩擦起电磁性液体阻尼减振器100的整体结构的稳定性。由于工作单元30包含永磁体31,且摩擦起电磁性液体阻尼减振器100在使用过程中会产生电流,因此主体11和端盖12采用有机玻璃等电绝缘且不导磁材料。
50.在使用过程中,摩擦起电磁性液体阻尼减振器100受到外界振动影响,工作单元30在减振腔14内产生位移,在弹力绳32的作用下,工作单元30做往复运动,磁性液体40同时与上摩擦部21及下摩擦部22产生摩擦,根据摩擦起电效应,此时上摩擦部21与下摩擦部22中产生电性相反的电荷,且上摩擦部21、下摩擦部22、电极层52、导线51、用电单元60相连接构成了闭合回路,电荷在闭合回路中移动最终形成电流,电流经过用电单元60,被用电单元60存储或利用。这样就实现了将振动机械能转化为可利用的电能,同时加快了对振动机械能的转化消耗,提高了摩擦起电磁性液体阻尼减振器100的阻尼减振效率,也拓展了摩擦起电磁性液体阻尼减振器100的实用性。
51.进一步地,上摩擦部21及下摩擦部22与工作单元30相邻的表面设有表面织构,表面织构可增大摩擦部20与磁性液体40的接触面积,改变磁性液体40的剪切速率,增大固液间摩擦,进一步加快对振动机械能的转化和消耗,提高了摩擦起电效率,同时提高摩擦起电磁性液体阻尼减振器100的减振效率。
52.在本说明书的描述中,参考术语“一些实施例”、“可选地”、“进一步地”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
53.尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1