本发明涉及岩土工程领域,尤其涉及一种确定岩石非定常蠕变参数的方法。
背景技术:
随着煤炭开采向着深度不断发展,与此同时,地下深部岩体工程所面临的问题也愈加复杂化,工程灾害譬如岩爆、瓦斯爆炸、井壁突水破裂、巷道周围岩石蠕变变形过大导致失稳破坏等也日渐频发。这些由于深部开采引起的工程灾害已经不仅严重影响了资源开采的正常进行,同时浪费了人力财力,也严重威胁到了工程施工人员的生命安全。而深部工程岩体常常处于高温度场、高渗流场、高地应力以及高瓦斯等等复杂地质条件下,这种复杂多变的环境使得坚硬岩体的流变特性变得显著。充分考虑岩体流变效应,这对于深部工程设计的长期稳定性与施工的安全性是不可回避的问题,同时也提出了更为艰巨的任务与挑战。
目前关于岩石流变问题的研究大多将流变参数视为常数,或者采用非线性元件代替线性元件来描述加速蠕变阶段,而在实际的复杂地质条件下,这些力学参数往往随应力和时间而发生变化。诸多研究充分地表述了蠕变的变形特性,然而忽略了应力状态与时间对蠕变参数的影响,对于把蠕变参数视为非定常的,再进行非线性流变本构关系的分析计算研究资料确很少。
李顺才在一种同时测定破碎岩石蠕变参数及渗透参数的操作方法的专利发明中虽然提供了一种测定岩石蠕变参数的方法,但是只是把蠕变参数视为定常数,并未涉及到变参数的确定。
综上所述,有必要对测定非定常蠕变参数作进一步完善。
技术实现要素:
在实际复杂地质条件下,岩石的力学参数往往随应力和时间而发生变化,本发明提供一种确定岩石非定常蠕变参数的方法,不仅可以较好地反映岩石蠕变的全过程,而且蠕变参数的变化也可以反映衰减蠕变阶段与稳定蠕变阶段岩石结构的劣化过程,使蠕变方程能较好地模拟砂岩衰减蠕变与稳定蠕变阶段的蠕变特性,对于研究深部岩体的流变特性和实际工程应用具有重要的意义;另外,该方法操作简单,真实性强,成本低廉,在此基础还可以加入不同场之间的耦合去更真实描述实际工程情况,来获取更接近实际的非定常蠕变参数和其他力学参数等,具有较好的实用性。
本发明是通过以下技术方案实现的,上述的确定岩石非定常蠕变参数的方法,具体包括以下七个步骤:第一步,制作岩石试件;第二步,安装岩石试样;第三步,分级加载蠕变试验;第四步,提出非定常蠕变本构模型和确定非定常蠕变本构方程;第五步,确定长期强度;第六步,在对每一级荷载作用时间分段;第七步,结合试验数据并运用origin,基于最小二乘法原理求出各应力水平蠕变参数的数值。
制作岩石试样方法如下:获得直径50mm,高度100mm的标准圆柱体试样,使试样的直径误差不超出0.3mm,两端面的不平行度最大不超过 0.05mm 且垂直于试样轴线,最大偏差不超过0.25°,采用声波检测系统挑选波速相近的岩石试样作为三轴试验用试件。
安装岩石试样在试件两端面均匀涂抹凡士林,以减少刚性垫块与试件端面之间的摩擦力,最大限度地消除端部效应;利用细铁丝箍套管与铁块连接处,确保密封性,避免在试验过程中试样进油以及试件破坏后岩石碎屑对油造成污染;安装轴向位移传感器和链式横向位移传感器,尽量使横向位移传感器与试件底面保持水平,轴向位移传感器的接触点对称且水平;将安装好的试件置于伺服试验机承压板中心固定好。
进行分级加载蠕变试验,在封闭压力室,待压力室油充满之后,预施加1KN的轴向荷载与0.5MPa的围压,使试件与荷载施加仪器充分接触,反复调试进油与透气阀门,将压力室内部的空气排尽;以500N/s的加载速率同步施加侧向压力及轴向压力至预定的围压值,使试件处于静水压力状态并保持侧向压力在实验过程中不变,注意围压活塞的进程,避免实验过程中围压的减少;设计相应加载程序,设定位移上限值,采用位移控制方式以0.002mm/s的加载速率施加轴向荷载;注意观察试验曲线,岩样破坏后,逐渐卸轴压与围压至0,将试验数据保存并导出,充分回油之后取出岩样,取下位移传感器并整理清洁实验器材。
所述的确定岩石非定常蠕变参数的方法,用来确定长期强度。
对于时间进行分段:针对各级应力条件下的试验曲线,在前几级荷载作用下可以根据所做蠕变试验时间的长短进行划分时间段(t可以等时间段选取),由于在最后一级荷载作用下试样已经破坏,t的取值视荷载持续时间而定,并且认为在各时刻t附近的30min区间内蠕变参数没有变化。
采用最小二乘法中的Levenberg-Marquard优化算法对模型进行参数求解的方法,详细可参照Levenberg-Marquard优化算法的基本原理。
本发明提供一种确定岩石非定常蠕变参数的方法,不仅可以较好地反映岩石蠕变的全过程,而且蠕变参数的变化也可以反映衰减蠕变阶段与稳定蠕变阶段岩石结构的劣化过程,使蠕变方程能较好地模拟砂岩衰减蠕变与稳定蠕变阶段的蠕变特性,对于研究深部岩体的流变特性和实际工程应用具有重要的意义;另外,该方法操作简单,真实性强,成本低廉,在此基础还可以加入不同场之间的耦合去更真实描述实际工程情况,来获取更接近实际的非定常蠕变参数和其他力学参数等,具有较好的实用性。
附图说明
图1 为本发明的确定岩石非定常蠕变参数的方法流程示意图。
图2 为使用本发明的方法得到的岩石等时应力应变曲线图。
具体实施方式
在实际复杂地质条件下,岩石的力学参数往往随应力和时间而发生变化,本发明提供一种确定岩石非定常蠕变参数的方法,不仅可以较好地反映岩石蠕变的全过程,而且蠕变参数的变化也可以反映衰减蠕变阶段与稳定蠕变阶段岩石结构的劣化过程,使蠕变方程能较好地模拟砂岩衰减蠕变与稳定蠕变阶段的蠕变特性,对于研究深部岩体的流变特性和实际工程应用具有重要的意义;另外,该方法操作简单,真实性强,成本低廉,在此基础还可以加入不同场之间的耦合去更真实描述实际工程情况,来获取更接近实际的非定常蠕变参数和其他力学参数等,具有较好的实用性。
本发明是通过以下技术方案实现的,上述的确定岩石非定常蠕变参数的方法,具体包括以下七个步骤:第一步,制作岩石试件;第二步,安装岩石试样;第三步,分级加载蠕变试验;第四步,提出非定常蠕变本构模型和确定非定常蠕变本构方程;第五步,确定长期强度;第六步,在对每一级荷载作用时间分段;第七步,结合试验数据并运用origin,基于最小二乘法原理求出各应力水平蠕变参数的数值。
制作岩石试样方法如下:获得直径50mm,高度100mm的标准圆柱体试样,使试样的直径误差不超出0.3mm,两端面的不平行度最大不超过 0.05mm 且垂直于试样轴线,最大偏差不超过0.25°,采用声波检测系统挑选波速相近的岩石试样作为三轴试验用试件。
安装岩石试样在试件两端面均匀涂抹凡士林,以减少刚性垫块与试件端面之间的摩擦力,最大限度地消除端部效应;利用细铁丝箍套管与铁块连接处,确保密封性,避免在试验过程中试样进油以及试件破坏后岩石碎屑对油造成污染;安装轴向位移传感器和链式横向位移传感器,尽量使横向位移传感器与试件底面保持水平,轴向位移传感器的接触点对称且水平;将安装好的试件置于伺服试验机承压板中心固定好。
进行分级加载蠕变试验,在封闭压力室,待压力室油充满之后,预施加1KN的轴向荷载与0.5MPa的围压,使试件与荷载施加仪器充分接触,反复调试进油与透气阀门,将压力室内部的空气排尽;以500N/s的加载速率同步施加侧向压力及轴向压力至预定的围压值,使试件处于静水压力状态并保持侧向压力在实验过程中不变,注意围压活塞的进程,避免实验过程中围压的减少;设计相应加载程序,设定位移上限值,采用位移控制方式以0.002mm/s的加载速率施加轴向荷载;注意观察试验曲线,岩样破坏后,逐渐卸轴压与围压至0,将试验数据保存并导出,充分回油之后取出岩样,取下位移传感器并整理清洁实验器材。
所述的确定岩石非定常蠕变参数的方法,用来确定长期强度。
对于时间进行分段:针对各级应力条件下的试验曲线,在前几级荷载作用下可以根据所做蠕变试验时间的长短进行划分时间段(t可以等时间段选取),由于在最后一级荷载作用下试样已经破坏,t的取值视荷载持续时间而定,并且认为在各时刻t附近的30min区间内蠕变参数没有变化。
采用最小二乘法中的Levenberg-Marquard优化算法对模型进行参数求解的方法,详细可参照Levenberg-Marquard优化算法的基本原理。
本发明提供一种确定岩石非定常蠕变参数的方法,不仅可以较好地反映岩石蠕变的全过程,而且蠕变参数的变化也可以反映衰减蠕变阶段与稳定蠕变阶段岩石结构的劣化过程,使蠕变方程能较好地模拟砂岩衰减蠕变与稳定蠕变阶段的蠕变特性,对于研究深部岩体的流变特性和实际工程应用具有重要的意义;另外,该方法操作简单,真实性强,成本低廉,在此基础还可以加入不同场之间的耦合去更真实描述实际工程情况,来获取更接近实际的非定常蠕变参数和其他力学参数等,具有较好的实用性。